Completion of test cases

This commit is contained in:
majianwei 2021-04-07 10:03:17 +08:00
parent 5d96d0f7e9
commit 16932e468e
2 changed files with 59 additions and 1 deletions

View File

@ -455,7 +455,7 @@ class Norm(Cell):
TypeError: If `keep_dims` is not a bool.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> net = nn.Norm(axis=0)

View File

@ -0,0 +1,58 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
context.set_context(device_target='CPU')
class NetNorm(nn.Cell):
def __init__(self):
super(NetNorm, self).__init__()
self.norm_1 = nn.Norm(axis=0)
self.norm_2 = nn.Norm(axis=1)
self.norm_3 = nn.Norm(axis=-1)
self.norm_4 = nn.Norm(axis=-1, keep_dims=True)
@ms_function
def construct(self, indices):
return (self.norm_1(indices),
self.norm_2(indices),
self.norm_3(indices),
self.norm_4(indices))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_norm():
norm = NetNorm()
indices = Tensor(np.array([[4, 4, 9, 1], [2, 1, 3, 6]]), mindspore.float32)
output = norm(indices)
expect_0 = np.array([4.472136, 4.1231055, 9.486833, 6.0827627]).astype(np.float32)
expect_1 = np.array([10.677078, 7.071068]).astype(np.float32)
expect_2 = np.array([10.677078, 7.071068]).astype(np.float32)
expect_3 = np.array([[10.677078], [7.071068]]).astype(np.float32)
assert (output[0].asnumpy() == expect_0).all()
assert (output[1].asnumpy() == expect_1).all()
assert (output[2].asnumpy() == expect_2).all()
assert (output[3].asnumpy() == expect_3).all()