forked from mindspore-Ecosystem/mindspore
Completion of test cases
This commit is contained in:
parent
5d96d0f7e9
commit
16932e468e
|
@ -455,7 +455,7 @@ class Norm(Cell):
|
|||
TypeError: If `keep_dims` is not a bool.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> net = nn.Norm(axis=0)
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
|
||||
context.set_context(device_target='CPU')
|
||||
|
||||
class NetNorm(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetNorm, self).__init__()
|
||||
|
||||
self.norm_1 = nn.Norm(axis=0)
|
||||
self.norm_2 = nn.Norm(axis=1)
|
||||
self.norm_3 = nn.Norm(axis=-1)
|
||||
self.norm_4 = nn.Norm(axis=-1, keep_dims=True)
|
||||
|
||||
@ms_function
|
||||
def construct(self, indices):
|
||||
return (self.norm_1(indices),
|
||||
self.norm_2(indices),
|
||||
self.norm_3(indices),
|
||||
self.norm_4(indices))
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_norm():
|
||||
norm = NetNorm()
|
||||
indices = Tensor(np.array([[4, 4, 9, 1], [2, 1, 3, 6]]), mindspore.float32)
|
||||
output = norm(indices)
|
||||
expect_0 = np.array([4.472136, 4.1231055, 9.486833, 6.0827627]).astype(np.float32)
|
||||
expect_1 = np.array([10.677078, 7.071068]).astype(np.float32)
|
||||
expect_2 = np.array([10.677078, 7.071068]).astype(np.float32)
|
||||
expect_3 = np.array([[10.677078], [7.071068]]).astype(np.float32)
|
||||
|
||||
assert (output[0].asnumpy() == expect_0).all()
|
||||
assert (output[1].asnumpy() == expect_1).all()
|
||||
assert (output[2].asnumpy() == expect_2).all()
|
||||
assert (output[3].asnumpy() == expect_3).all()
|
Loading…
Reference in New Issue