modify format

This commit is contained in:
huodagu 2022-03-01 17:46:19 +08:00
parent 808e6c58a4
commit 1489cf432b
7 changed files with 58 additions and 56 deletions

View File

@ -46,10 +46,10 @@
- **params** (dict)表示没有传入参数的字典参数派生自SentencePiece库
.. code-block::
.. code-block::
input_sentence_size 0
max_sentencepiece_length 16
input_sentence_size 0
max_sentencepiece_length 16
**返回:**

View File

@ -6,8 +6,8 @@
模型训练或推理的高阶接口。 `Model` 会根据用户传入的参数封装可训练或推理的实例。
.. note::
如果使用混合精度功能,需要同时设置`optimizer`参数,否则混合精度功能不生效。
当使用混合精度时,优化器中的 `global_step` 可能与模型中的 `cur_step_num` 不同。
如果使用混合精度功能,需要同时设置 `optimizer` 参数,否则混合精度功能不生效。
当使用混合精度时,优化器中的 `global_step` 可能与模型中的 `cur_step_num` 不同。
**参数:**

View File

@ -31,7 +31,7 @@ mindspore.nn.AdaSumByDeltaWeightWrapCell
**异常:**
- **RuntimeError** - `parallel_mode` 使用了`stand_alone`模式, AdaSum仅支持在分布式场景下使用。
- **RuntimeError** - `parallel_mode` 使用了 `stand_alone` 模式, AdaSum仅支持在分布式场景下使用。
- **RuntimeError** - 同时使用了优化器并行, 暂时不支持在优化器并行场景下使用AdaSum。
- **RuntimeError** - 同时使用了流水线并行, 暂时不支持在流水线并行场景下使用AdaSum。
- **RuntimeError** - `device_num` 不是2的幂或者小于16。

View File

@ -31,7 +31,7 @@ mindspore.nn.AdaSumByGradWrapCell
**异常:**
- **RuntimeError** - `parallel_mode` 使用了`stand_alone`模式, AdaSum仅支持在分布式场景下使用。
- **RuntimeError** - `parallel_mode` 使用了 `stand_alone` 模式, AdaSum仅支持在分布式场景下使用。
- **RuntimeError** - 同时使用了优化器并行, 暂时不支持在优化器并行场景下使用AdaSum。
- **RuntimeError** - 同时使用了流水线并行, 暂时不支持在流水线并行场景下使用AdaSum。
- **RuntimeError** - `device_num` 不是2的幂或者小于16。

View File

@ -392,7 +392,7 @@
其中的每一个元素指定对应的输入/输出的Tensor分布策略可参考 `mindspore.ops.Primitive.shard` 的描述也可以设置为None会默认以数据并行执行。
其余算子的并行策略由输入输出指定的策略推导得到。
.. note:: 需设置为PyNative模式并且全自动并行(AUTO_PARALLEL),同时设置`set_auto_parallel_context`中的搜索模式(search mode)为"sharding_propagation"或半自动并行SEMI_AUTO_PARALLEL)。
.. note:: 需设置为PyNative模式并且全自动并行(AUTO_PARALLEL),同时设置 `set_auto_parallel_context` 中的搜索模式(search mode)为"sharding_propagation"或半自动并行SEMI_AUTO_PARALLEL)。
**参数:**

View File

@ -28,5 +28,5 @@ mindspore.ops.NotEqual
Tensor输出shape与输入相同数据类型为bool。
**异常:**
- **TypeError** - `x``y` 不是以下之一Tensor、Number、bool。
- **TypeError** - `x``y` 都不是Tensor。
- **TypeError** - `x` `y` 不是以下之一Tensor、Number、bool。
- **TypeError** - `x` `y` 都不是Tensor。

View File

@ -57,53 +57,54 @@ class Custom(ops.PrimitiveWithInfer):
This could be used when func_type is "aot" or "julia".
1. for "aot":
Currently "aot" supports GPU/CPU(linux only) platform.
"aot" means ahead of time, in which case Custom directly launches user defined "xxx.so" file as an
operator. Users need to compile a handwriting "xxx.cu"/"xxx.cc" file into "xxx.so" ahead of time,
and offer the path of the file along with a function name.
- "xxx.so" file generation:
Currently "aot" supports GPU/CPU(linux only) platform.
"aot" means ahead of time, in which case Custom directly launches user defined "xxx.so" file as an
operator. Users need to compile a handwriting "xxx.cu"/"xxx.cc" file into "xxx.so" ahead of time,
and offer the path of the file along with a function name.
1) GPU Platform: Given user defined "xxx.cu" file (ex. "{path}/add.cu"), use nvcc command to compile
it.(ex. "nvcc --shared -Xcompiler -fPIC -o add.so add.cu")
- "xxx.so" file generation:
2) CPU Platform: Given user defined "xxx.cc" file (ex. "{path}/add.cc"), use g++/gcc command to
compile it.(ex. "g++ --shared -fPIC -o add.so add.cc")
1) GPU Platform: Given user defined "xxx.cu" file (ex. "{path}/add.cu"), use nvcc command to compile
it.(ex. "nvcc --shared -Xcompiler -fPIC -o add.so add.cu")
- Define a "xxx.cc"/"xxx.cu" file:
2) CPU Platform: Given user defined "xxx.cc" file (ex. "{path}/add.cc"), use g++/gcc command to
compile it.(ex. "g++ --shared -fPIC -o add.so add.cc")
"aot" is a cross-platform identity. The functions defined in "xxx.cc" or "xxx.cu" share the same args.
Typically, the function should be as:
- Define a "xxx.cc"/"xxx.cu" file:
.. code-block::
"aot" is a cross-platform identity. The functions defined in "xxx.cc" or "xxx.cu" share
the same args. Typically, the function should be as:
int func(int nparam, void **params, int *ndims, int64_t **shapes, const char **dtypes,
.. code-block::
int func(int nparam, void **params, int *ndims, int64_t **shapes, const char **dtypes,
void *stream, void *extra)
Parameters:
Parameters:
- nparam(int): total number of inputs plus outputs; suppose the operator has 2 inputs and 3 outputs,
then nparam=5
- params(void \*\*): a pointer to the array of inputs and outputs' pointer; the pointer type of inputs
and outputs is void \* ; suppose the operator has 2 inputs and 3 outputs, then the first input's
pointer is params[0] and the second output's pointer is params[3]
- ndims(int \*): a pointer to the array of inputs and outputs' dimension num; suppose params[i] is a
1024x1024 tensor and params[j] is a 77x83x4 tensor, then ndims[i]=2, ndims[j]=3.
- shapes(int64_t \*\*): a pointer to the array of inputs and outputs' shapes(int64_t \*); the ith
input's jth dimension's size is shapes[i][j](0<=j<ndims[i]); suppose params[i] is a 2x3 tensor and
params[j] is a 3x3x4 tensor, then shapes[i][0]=2, shapes[j][2]=4.
- dtypes(const char \*\*): a pointer to the array of inputs and outputs' types(const char \*);
(ex. "float32", "float16", "float", "float64", "int", "int8", "int16", "int32", "int64", "uint",
"uint8", "uint16", "uint32", "uint64", "bool")
- stream(void \*): stream pointer, only used in cuda file
- extra(void \*): used for further extension
- nparam(int): total number of inputs plus outputs; suppose the operator has 2 inputs and 3 outputs,
then nparam=5
- params(void \*\*): a pointer to the array of inputs and outputs' pointer; the pointer type of
inputs and outputs is void \* ; suppose the operator has 2 inputs and 3 outputs, then the first
input's pointer is params[0] and the second output's pointer is params[3]
- ndims(int \*): a pointer to the array of inputs and outputs' dimension num; suppose params[i] is a
1024x1024 tensor and params[j] is a 77x83x4 tensor, then ndims[i]=2, ndims[j]=3.
- shapes(int64_t \*\*): a pointer to the array of inputs and outputs' shapes(int64_t \*); the ith
input's jth dimension's size is shapes[i][j](0<=j<ndims[i]); suppose params[i] is a 2x3 tensor and
params[j] is a 3x3x4 tensor, then shapes[i][0]=2, shapes[j][2]=4.
- dtypes(const char \*\*): a pointer to the array of inputs and outputs' types(const char \*);
(ex. "float32", "float16", "float", "float64", "int", "int8", "int16", "int32", "int64", "uint",
"uint8", "uint16", "uint32", "uint64", "bool")
- stream(void \*): stream pointer, only used in cuda file
- extra(void \*): used for further extension
Return Value(int):
Return Value(int):
- 0: MindSpore will continue to run if this aot kernel is successfully executed
- others: MindSpore will raise exception and exit
- 0: MindSpore will continue to run if this aot kernel is successfully executed
- others: MindSpore will raise exception and exit
Examples: see details in tests/st/ops/graph_kernel/custom/aot_test_files/
Examples: see details in tests/st/ops/graph_kernel/custom/aot_test_files/
- Use it in Custom:
@ -114,20 +115,21 @@ class Custom(ops.PrimitiveWithInfer):
"aot")
2. for "julia":
Currently "julia" supports CPU(linux only) platform.
For julia use JIT compiler, and julia support c api to call julia code.
The Custom can directly launches user defined "xxx.jl" file as an operator.
Users need to write a "xxx.jl" file which include modules and functions,
and offer the path of the file along with a module name and function name.
Examples: see details in tests/st/ops/graph_kernel/custom/julia_test_files/
Currently "julia" supports CPU(linux only) platform.
For julia use JIT compiler, and julia support c api to call julia code.
The Custom can directly launches user defined "xxx.jl" file as an operator.
Users need to write a "xxx.jl" file which include modules and functions,
and offer the path of the file along with a module name and function name.
- Use it in Custom:
Examples: see details in tests/st/ops/graph_kernel/custom/julia_test_files/
.. code-block::
- Use it in Custom:
Custom(func="{dir_path}/{file_name}:{module_name}:{func_name}",...)
(ex. Custom(func="./add.jl:Add:add", out_shape=[1], out_dtype=mstype.float32, "julia")
.. code-block::
Custom(func="{dir_path}/{file_name}:{module_name}:{func_name}",...)
(ex. Custom(func="./add.jl:Add:add", out_shape=[1], out_dtype=mstype.float32, "julia")
out_shape (Union[function, list, tuple]): The output shape infer function or the value of output shape of
`func`. Default: None.
@ -155,8 +157,8 @@ class Custom(ops.PrimitiveWithInfer):
["hybrid", "akg", "tbe", "aot", "pyfunc", "julia", "aicpu"].
Each `func_type` only supports specific platforms(targets). Default: "hybrid".
The supported platforms of `func_type`:
Each `func_type` only supports specific platforms(targets). Default: "hybrid".
The supported platforms of `func_type`:
- "hybrid": supports ["Ascend", "GPU"].
- "akg": supports ["Ascend", "GPU"].