forked from mindspore-Ecosystem/mindspore
!21607 [assistant][ops]New operator implementation, Celu
Merge pull request !21607 from yangwm/ops
This commit is contained in:
commit
1407dbec37
|
@ -266,6 +266,7 @@ inline const PrimitivePtr kPrimReal = std::make_shared<Primitive>(kReal);
|
|||
inline const PrimitivePtr kPrimExtractVolumePatches = std::make_shared<Primitive>("ExtractVolumePatches");
|
||||
|
||||
// NN
|
||||
inline const PrimitivePtr kPrimCeLU = std::make_shared<Primitive>("CeLU");
|
||||
inline const PrimitivePtr kPrimAdam = std::make_shared<Primitive>("Adam");
|
||||
inline const PrimitivePtr kPrimAudioSpectrogram = std::make_shared<Primitive>("AudioSpectrogram");
|
||||
inline const PrimitivePtr kPrimFlatten = std::make_shared<Primitive>("Flatten");
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "ops/celu.h"
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
#include "ops/op_utils.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "abstract/primitive_infer_map.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
(void)CheckAndConvertUtils::CheckInteger("input numbers", input_args.size(), kGreaterEqual, 1, prim_name);
|
||||
auto shape_element = CheckAndConvertUtils::GetTensorInputShape(prim_name, input_args, 0);
|
||||
return shape_element;
|
||||
}
|
||||
|
||||
TypePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
auto prim_name = prim->name();
|
||||
(void)CheckAndConvertUtils::CheckInteger("CeLU input numbers", input_args.size(), kEqual, 1, prim_name);
|
||||
const std::set<TypePtr> valid_types = {kFloat16, kFloat32};
|
||||
MS_EXCEPTION_IF_NULL(input_args[0]);
|
||||
auto x_type = input_args[0]->BuildType();
|
||||
(void)CheckAndConvertUtils::CheckTensorTypeValid("input_x", x_type, valid_types, prim_name);
|
||||
return x_type;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
AbstractBasePtr CeLUInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto type = InferType(primitive, input_args);
|
||||
auto shape = InferShape(primitive, input_args);
|
||||
return abstract::MakeAbstract(shape, type);
|
||||
}
|
||||
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(CeLU, prim::kPrimCeLU, CeLUInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,45 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_CELU_H_
|
||||
#define MINDSPORE_CORE_OPS_CELU_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "ops/primitive_c.h"
|
||||
#include "abstract/abstract_value.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameCeLU = "CeLU";
|
||||
class CeLU : public PrimitiveC {
|
||||
public:
|
||||
CeLU() : PrimitiveC(kNameCeLU) { InitIOName({"x"}, {"output"}); }
|
||||
~CeLU() = default;
|
||||
MS_DECLARE_PARENT(CeLU, PrimitiveC);
|
||||
void Init() {}
|
||||
};
|
||||
|
||||
AbstractBasePtr CeLUInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
using PrimCeLUPtr = std::shared_ptr<CeLU>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_CELU_H_
|
|
@ -41,9 +41,60 @@ __all__ = ['Softmax',
|
|||
'LogSigmoid',
|
||||
'SoftShrink',
|
||||
'HShrink',
|
||||
'CELU',
|
||||
]
|
||||
|
||||
|
||||
class CELU(Cell):
|
||||
r"""
|
||||
Continuously differentiable exponential linear units activation function.
|
||||
|
||||
Applies the continuously differentiable exponential linear units function element-wise.
|
||||
|
||||
.. math::
|
||||
|
||||
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
|
||||
|
||||
It returns element-wise :math:`\max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))`.
|
||||
|
||||
The picture about CELU looks like this `CELU <https://arxiv.org/abs/1704.07483>`_.
|
||||
|
||||
Args:
|
||||
alpha (float): The :math:`\alpha` value for the Celu formulation. Default: 1.0
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The input of CELU. The required dtype is float16 or float32.
|
||||
The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
|
||||
|
||||
Outputs:
|
||||
Tensor, with the same type and shape as the `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `alpha` is not a float.
|
||||
ValueError: If `alpha` has the value of 0.
|
||||
TypeError: If `x` is not a Tensor.
|
||||
TypeError: If the dtype of 'input_x' is neither float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([-2.0, -1.0, 1.0, 2.0]), mindspore.float32)
|
||||
>>> celu = nn.CELU()
|
||||
>>> output = celu(x)
|
||||
>>> print(output)
|
||||
[-0.86466473 -0.63212055 1. 2. ]
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=1.0):
|
||||
"""Initialize CELU."""
|
||||
super(CELU, self).__init__()
|
||||
self.celu = P.CeLU(alpha=alpha)
|
||||
|
||||
def construct(self, x):
|
||||
return self.celu(x)
|
||||
|
||||
|
||||
class Softmax(Cell):
|
||||
r"""
|
||||
Softmax activation function.
|
||||
|
|
|
@ -70,3 +70,19 @@ def get_bprop_hshrink(self):
|
|||
return (dx,)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.CeLU)
|
||||
def get_bprop_celu(self):
|
||||
"""Grad definition for `CeLU` operation."""
|
||||
alpha = self.alpha
|
||||
greater_equal = P.GreaterEqual()
|
||||
less = P.Less()
|
||||
|
||||
def bprop(x, out, dout):
|
||||
greater = greater_equal(x, 0.0)
|
||||
lesser = less(x, 0.0)
|
||||
dx = dout * (greater * 1.0 + lesser * (out / alpha + 1.0))
|
||||
return (dx,)
|
||||
|
||||
return bprop
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
# ============================================================================
|
||||
|
||||
"""tbe ops"""
|
||||
from .celu import _celu_tbe
|
||||
from .abs import _abs_tbe
|
||||
from .inplace_add import _inplace_add_tbe
|
||||
from .inplace_sub import _inplace_sub_tbe
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Celu op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
celu_op_info = TBERegOp("CeLU") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("celu.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("celu") \
|
||||
.partial_flag(True) \
|
||||
.attr("alpha", "optional", "float", "all", "1.0") \
|
||||
.attr("alpha2", "optional", "float", "all", "1.0") \
|
||||
.attr("alpha3", "optional", "float", "all", "1.0") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(celu_op_info)
|
||||
def _celu_tbe():
|
||||
"""CeLU TBE register"""
|
||||
return
|
|
@ -70,7 +70,7 @@ from .nn_ops import (LSTM, SGD, Adam, AdamWeightDecay, FusedSparseAdam, FusedSpa
|
|||
DepthwiseConv2dNative,
|
||||
DropoutDoMask, Dropout, Dropout2D, Dropout3D, DropoutGenMask, Flatten,
|
||||
InstanceNorm, BNTrainingReduce, BNTrainingUpdate,
|
||||
GeLU, Gelu, FastGeLU, FastGelu, Elu,
|
||||
GeLU, Gelu, FastGeLU, FastGelu, Elu, CeLU,
|
||||
GetNext, L2Normalize, LayerNorm, L2Loss, CTCLoss, CTCLossV2, CTCLossV2Grad, CTCGreedyDecoder,
|
||||
LogSoftmax, MaxPool3D, AvgPool3D,
|
||||
MaxPool, DataFormatDimMap,
|
||||
|
@ -123,6 +123,7 @@ from .rl_ops import (BufferAppend, BufferGetItem, BufferSample)
|
|||
from ._inner_ops import (MatmulDDS, DSDMatmul, NonZero)
|
||||
|
||||
__all__ = [
|
||||
'CeLU',
|
||||
'Ger',
|
||||
'Unique',
|
||||
'ReverseSequence',
|
||||
|
|
|
@ -89,6 +89,57 @@ def _update_attr_by_format(arg_value, arg_format):
|
|||
return ret
|
||||
|
||||
|
||||
class CeLU(Primitive):
|
||||
r"""
|
||||
Computes CeLU (Continuously differentiable exponential linear units) of input tensors element-wise.
|
||||
|
||||
.. math::
|
||||
|
||||
\text{CeLU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
|
||||
|
||||
It returns :math:`\max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))` element-wise.
|
||||
|
||||
The picture about CeLU looks like this `CeLU <https://arxiv.org/abs/1704.07483>`_.
|
||||
|
||||
|
||||
Args:
|
||||
alpha (float): The :math:`\alpha` value for the Celu formulation. Default: 1.0
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
|
||||
additional dimensions, with dtype of float16 and float32.
|
||||
|
||||
Outputs:
|
||||
Tensor, with the same type and shape as the `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `alpha` is not a float.
|
||||
ValueError: If `alpha` has the value of 0.
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
TypeError: If the dtype of 'input_x' is neither float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([-2.0, -1.0, 1.0, 2.0]), mindspore.float32)
|
||||
>>> celu = ops.CeLU(alpha=1.0)
|
||||
>>> output = celu(input_x)
|
||||
>>> print(output)
|
||||
[-0.86466473 -0.63212055 1. 2. ]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, alpha=1.0):
|
||||
"""Initialize CeLU"""
|
||||
validator.check_value_type("alpha", alpha, [float], self.name)
|
||||
validator.check_float(alpha, 0.0, Rel.NE, "alpha", self.name)
|
||||
self.alpha = alpha
|
||||
self.alpha2 = alpha
|
||||
self.add_prim_attr('alpha', self.alpha)
|
||||
self.add_prim_attr('alpha2', self.alpha2)
|
||||
|
||||
|
||||
class Flatten(PrimitiveWithInfer):
|
||||
r"""
|
||||
Flattens a tensor without changing its batch size on the 0-th axis.
|
||||
|
|
|
@ -1729,6 +1729,10 @@ test_case_math_ops = [
|
|||
]
|
||||
|
||||
test_case_nn_ops = [
|
||||
('CeLU', {
|
||||
'block': P.CeLU(),
|
||||
'desc_inputs': [[1, 2, 3]],
|
||||
'desc_bprop': [[1, 2, 3]]}),
|
||||
('BiasAdd', {
|
||||
'block': P.BiasAdd(),
|
||||
'desc_inputs': [[1, 3, 3, 3], [3]],
|
||||
|
|
Loading…
Reference in New Issue