!21283 VM bug fix and test_cont_case add gpu

Merge pull request !21283 from chenfei_mindspore/vm-bug-fix
This commit is contained in:
i-robot 2021-08-04 02:44:04 +00:00 committed by Gitee
commit 1245eed4d1
4 changed files with 171 additions and 93 deletions

View File

@ -127,6 +127,11 @@ void CompileGraph::AddInput(const AnfNodePtr &node) {
MS_LOG(DEBUG) << "Input node is null " << node->DebugString(true);
(void)Ref(node);
return;
} else if (node->isa<ValueNode>()) {
// Value node maybe reused in different graph or by different nodes,copy the value node to ensure stack correct.
auto copy_value_node = NewValueNode(node->cast<ValueNodePtr>()->value());
(void)Ref(copy_value_node);
return;
}
AddInst(Instruction::kInput, Ref(node));
set_height(height_ + 1);

View File

@ -675,10 +675,9 @@ class SideEffectControlFlowAssignDependWhileNet(Cell):
return grad_out
# Now the case can't pass because the GPU RT problem, so only run on Ascend current time.
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_side_effect_grad_control_flow_assign_depend_while_net():
context.set_context(mode=context.GRAPH_MODE)

View File

@ -23,6 +23,7 @@ from mindspore.common import dtype as mstype
grad_all = C.GradOperation(get_all=True)
context.set_context(device_target="Ascend")
def test_for_in_for_01():
class ForInForNet(nn.Cell):
def __init__(self):
@ -87,10 +88,10 @@ def test_for_in_for_02():
self.param_b = Parameter(Tensor(11, mstype.int32), name='b')
def construct(self, x):
for _ in range(0, 10):
for _ in range(0, 3):
x = x * 2
self.assign(self.param_a, x + self.param_a)
for _ in range(0, 5):
for _ in range(0, 2):
x = self.add(x, x)
self.param_b += 1
y = self.sub(x, self.param_b + self.param_a)

View File

@ -23,6 +23,7 @@ from mindspore import nn
from mindspore.common.parameter import Parameter, ParameterTuple
from mindspore.ops import composite as C
from mindspore.ops import operations as P
# from tests.vm_impl.math_ops_vm_impl import *
# from tests.vm_impl.vm_interface import *
# from tests.vm_impl import *
@ -54,8 +55,9 @@ def test_while_grad():
def construct(self, *inputs):
return grad_all(self.net)(*inputs)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -63,15 +65,16 @@ def test_while_grad():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_const_param_grad():
class MyWhileNet(nn.Cell):
@ -93,7 +96,8 @@ def test_while_with_const_param_grad():
def construct(self, *inputs):
return grad_all(self.net)(*inputs)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor([1.1], dtype=ms.float32)
@ -104,9 +108,10 @@ def test_while_with_const_param_grad():
assert np.allclose(graph_output[0].asnumpy(), expect_one, 0.0001, 0.0001)
assert np.allclose(graph_output[1].asnumpy(), expect_two, 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_variable_grad():
class MyWhileNet(nn.Cell):
@ -128,7 +133,8 @@ def test_while_with_variable_grad():
def construct(self, *inputs):
return grad_all(self.net)(*inputs)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor([1.1], dtype=ms.float32)
@ -139,9 +145,10 @@ def test_while_with_variable_grad():
assert np.allclose(graph_output[0].asnumpy(), expect_one, 0.0001, 0.0001)
assert np.allclose(graph_output[1].asnumpy(), expect_two, 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_param_forward():
class MyWhileNet(nn.Cell):
@ -160,8 +167,9 @@ def test_while_with_param_forward():
out = out + x + self.param
idx = idx + 1
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
net = MyWhileNet()
idx = Tensor(np.array(0), dtype=ms.int32)
end = Tensor(np.array(2), dtype=ms.int32)
@ -170,12 +178,14 @@ def test_while_with_param_forward():
expect = np.array([[[6, 8], [10, 12]], [[19, 22], [25, 28]]], dtype=np.int32)
assert np.allclose(graph_output.asnumpy(), expect, 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_endless_case():
"""endless case when optimization"""
class MyWhileNet(nn.Cell):
def __init__(self):
super().__init__()
@ -190,21 +200,23 @@ def test_while_endless_case():
out = out + part
idx = idx + 1
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
net = MyWhileNet()
idx = Tensor(np.array(0), dtype=ms.int32)
end = Tensor(np.array(2), dtype=ms.int32)
x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_param_grad():
class MyWhileNet(nn.Cell):
@ -232,7 +244,8 @@ def test_while_with_param_grad():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -242,9 +255,10 @@ def test_while_with_param_grad():
expect = np.array([[[2, 2], [2, 2]], [[2, 2], [2, 2]]], dtype=np.int32)
assert np.allclose(graph_output[0].asnumpy(), expect, 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_param_forward_with_const_branch():
class MyWhileNet(nn.Cell):
@ -264,8 +278,9 @@ def test_while_with_param_forward_with_const_branch():
out = out + idx + self.param
idx = idx + 1
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = while_net
idx = Tensor(np.array(0), dtype=ms.int32)
@ -273,16 +288,18 @@ def test_while_with_param_forward_with_const_branch():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_opt_endless():
"""endless during optimization case"""
class MyWhileNet(nn.Cell):
def __init__(self):
super().__init__()
@ -308,8 +325,9 @@ def test_while_opt_endless():
def construct(self, *inputs):
return grad_all(self.net)(*inputs)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -317,7 +335,7 @@ def test_while_opt_endless():
x = Tensor(np.ones([2, 2, 2]).astype(np.float32) * 3, dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@ -343,8 +361,9 @@ def test_no_while_call():
else:
out = out + idx + self.param
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = while_net
idx = Tensor(np.array(0), dtype=ms.int32)
@ -352,13 +371,14 @@ def test_no_while_call():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_param_grad_with_const_branch():
class MyWhileNet(nn.Cell):
@ -387,8 +407,9 @@ def test_while_with_param_grad_with_const_branch():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -396,10 +417,11 @@ def test_while_with_param_grad_with_const_branch():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.skip(reason="not supported yet")
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@ -435,8 +457,9 @@ def test_for_while_with_param_grad_with_const_branch():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -444,13 +467,14 @@ def test_for_while_with_param_grad_with_const_branch():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_for_while_with_param_grad_basic():
class MyWhileNet(nn.Cell):
@ -479,8 +503,9 @@ def test_for_while_with_param_grad_basic():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -488,13 +513,14 @@ def test_for_while_with_param_grad_basic():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_for_while_with_param_grad_normal():
class MyWhileNet(nn.Cell):
@ -523,8 +549,9 @@ def test_for_while_with_param_grad_normal():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -532,13 +559,14 @@ def test_for_while_with_param_grad_normal():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_param_basic_grad():
class MyWhileNet(nn.Cell):
@ -564,8 +592,9 @@ def test_while_with_param_basic_grad():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -573,13 +602,14 @@ def test_while_with_param_basic_grad():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_param_basic_grad_mul():
class MyWhileNet(nn.Cell):
@ -605,8 +635,9 @@ def test_while_with_param_basic_grad_mul():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -614,13 +645,14 @@ def test_while_with_param_basic_grad_mul():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_param_basic_grad_two():
class MyWhileNet(nn.Cell):
@ -647,8 +679,9 @@ def test_while_with_param_basic_grad_two():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -656,14 +689,15 @@ def test_while_with_param_basic_grad_two():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_with_param_basic_grad_three():
class MyWhileNet(nn.Cell):
@ -691,8 +725,9 @@ def test_while_with_param_basic_grad_three():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -700,15 +735,16 @@ def test_while_with_param_basic_grad_three():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_if_with_param_grad():
class MyWhileNet(nn.Cell):
@ -737,8 +773,9 @@ def test_while_if_with_param_grad():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -746,10 +783,11 @@ def test_while_if_with_param_grad():
x = Tensor(np.ones([2, 2, 2]).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.skip(reason="not supported yet")
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@ -778,8 +816,9 @@ def test_while_with_param_grad_not_enter_while():
def construct(self, a, b, c):
return grad_by_list(self.net, self.weights)(a, b, c)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
while_net = MyWhileNet()
net = GradNet(while_net)
idx = Tensor(np.array(3), dtype=ms.int32)
@ -787,13 +826,14 @@ def test_while_with_param_grad_not_enter_while():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_with_param_if_by_if_forward():
class MyIfByIfNet(nn.Cell):
@ -810,12 +850,13 @@ def test_with_param_if_by_if_forward():
else:
out = out + x
if a == b:
out = out + x*3 + self.param
out = out + x * 3 + self.param
else:
out = out + x*2
out = out + x * 2
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(0), dtype=ms.int32)
@ -823,13 +864,14 @@ def test_with_param_if_by_if_forward():
x = Tensor(np.ones([2, 2, 2]).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_with_param_if_by_if_grad_inputs():
class MyIfByIfNet(nn.Cell):
@ -844,7 +886,7 @@ def test_with_param_if_by_if_grad_inputs():
if a < b:
out = out + x + self.param * 4
if a == b:
out = out + x*3 + self.param * 3
out = out + x * 3 + self.param * 3
return out
class GradNet(nn.Cell):
@ -854,8 +896,9 @@ def test_with_param_if_by_if_grad_inputs():
def construct(self, *inputs):
return grad_all(self.net)(*inputs)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = GradNet(if_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -863,15 +906,16 @@ def test_with_param_if_by_if_grad_inputs():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_with_param_if_by_if_grad_parameter():
class MyIfByIfNet(nn.Cell):
@ -886,7 +930,7 @@ def test_with_param_if_by_if_grad_parameter():
if a < b:
out = out + x + self.param * 2
if a == b:
out = out + x*3 + self.param
out = out + x * 3 + self.param
return out
class GradNet(nn.Cell):
@ -897,8 +941,9 @@ def test_with_param_if_by_if_grad_parameter():
def construct(self, *inputs):
return grad_by_list(self.net, self.weights)(*inputs)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = GradNet(if_net)
idx = Tensor(np.array(0), dtype=ms.int32)
@ -906,13 +951,14 @@ def test_with_param_if_by_if_grad_parameter():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_with_param_if_by_if_grad_param_excute_null():
class MyIfByIfNet(nn.Cell):
@ -936,8 +982,9 @@ def test_with_param_if_by_if_grad_param_excute_null():
def construct(self, *inputs):
return grad_by_list(self.net, self.weights)(*inputs)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = GradNet(if_net)
idx = Tensor(np.array(4), dtype=ms.int32)
@ -945,13 +992,14 @@ def test_with_param_if_by_if_grad_param_excute_null():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_if_by_if_return_inside_grad():
class MyIfByIfNet(nn.Cell):
@ -977,8 +1025,9 @@ def test_if_by_if_return_inside_grad():
def construct(self, *inputs):
return grad_by_list(self.net, self.weights)(*inputs)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = GradNet(if_net)
idx = Tensor(np.array(1), dtype=ms.int32)
@ -986,13 +1035,14 @@ def test_if_by_if_return_inside_grad():
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_if_by_if_forward():
class MyIfByIfNet(nn.Cell):
@ -1019,8 +1069,9 @@ def test_if_by_if_forward():
a = a * b
out = a + b + x
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(2), dtype=ms.float32)
@ -1028,16 +1079,18 @@ def test_if_by_if_forward():
x = Tensor(np.array(4), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_if_by_if_forward_control_tuple_switch():
"""tuple_get from switch op will generate new switch inside to eliminate tuple_get"""
class Branch3Net(nn.Cell):
def __init__(self):
super().__init__()
@ -1052,6 +1105,7 @@ def test_if_by_if_forward_control_tuple_switch():
else:
b = self.add(a, x)
return a, b, x
class Branch2Net(nn.Cell):
def __init__(self):
super().__init__()
@ -1086,8 +1140,9 @@ def test_if_by_if_forward_control_tuple_switch():
a = a * b
out = a + b + x
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(2), dtype=ms.float32)
@ -1095,13 +1150,14 @@ def test_if_by_if_forward_control_tuple_switch():
x = Tensor(np.array(0), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_if_by_if_forward_control_inside_net():
class Branch3Net(nn.Cell):
@ -1120,6 +1176,7 @@ def test_if_by_if_forward_control_inside_net():
a = a * b
out = a + b + x
return out
class Branch2Net(nn.Cell):
def __init__(self):
super().__init__()
@ -1152,8 +1209,9 @@ def test_if_by_if_forward_control_inside_net():
a = self.sub(a, b)
out = self.net(a, b, x)
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(2), dtype=ms.float32)
@ -1161,10 +1219,11 @@ def test_if_by_if_forward_control_inside_net():
x = Tensor(np.array(0), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@ -1194,8 +1253,9 @@ def test_if_by_if_forward_use_namespace():
a = a * b
out = a + b + x
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(2), dtype=ms.float32)
@ -1203,10 +1263,11 @@ def test_if_by_if_forward_use_namespace():
x = Tensor(np.array(0), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@ -1240,8 +1301,9 @@ def test_if_by_if_forward_use_global_op():
a = a * b
out = a + b + x
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(2), dtype=ms.float32)
@ -1249,10 +1311,11 @@ def test_if_by_if_forward_use_global_op():
x = Tensor(np.array(0), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@ -1273,8 +1336,9 @@ def test_for_with_if_by_if_forward():
a = a * b
out = a + b + x
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(2), dtype=ms.float32)
@ -1282,10 +1346,11 @@ def test_for_with_if_by_if_forward():
x = Tensor(np.array(0), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@ -1308,8 +1373,9 @@ def test_for_with_if_by_if_forward_namespace():
a = a * b
out = a + b + x
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(2), dtype=ms.float32)
@ -1317,7 +1383,7 @@ def test_for_with_if_by_if_forward_namespace():
x = Tensor(np.array(0), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@ -1355,8 +1421,9 @@ def test_if_by_if_forward_const_branch_inner():
a = a * b
out = a + b + x
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(2), dtype=ms.float32)
@ -1364,10 +1431,11 @@ def test_if_by_if_forward_const_branch_inner():
x = Tensor(np.array(0), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@ -1401,8 +1469,9 @@ def test_if_by_if_forward_all_const_branch():
a = a * b
out = a + b + x
return out
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
if_net = MyIfByIfNet()
net = if_net
idx = Tensor(np.array(2), dtype=ms.float32)
@ -1410,13 +1479,14 @@ def test_if_by_if_forward_all_const_branch():
x = Tensor(np.array(0), dtype=ms.float32)
graph_output = net(idx, end, x)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.PYNATIVE_MODE)
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_if_const_grad():
class MyNet(nn.Cell):
@ -1452,6 +1522,7 @@ def test_if_const_grad():
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_if_by_if_const_grad():
class MyNet(nn.Cell):
@ -1491,6 +1562,7 @@ def test_if_by_if_const_grad():
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_const_grad():
class MyNet(nn.Cell):
@ -1524,6 +1596,7 @@ def test_while_const_grad():
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_if_by_while_const_grad():
class MyNet(nn.Cell):