diff --git a/mindspore/python/mindspore/ops/composite/__init__.py b/mindspore/python/mindspore/ops/composite/__init__.py index 620bb09356f..f747fb0e5e0 100644 --- a/mindspore/python/mindspore/ops/composite/__init__.py +++ b/mindspore/python/mindspore/ops/composite/__init__.py @@ -29,7 +29,7 @@ from mindspore.ops.composite.multitype_ops.ones_like_impl import ones_like from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like from mindspore.ops.function.random_func import normal, laplace, uniform, gamma, poisson, multinomial from mindspore.ops.composite.math_ops import count_nonzero, tensor_dot, dot, batch_dot, matmul, cummin, mm -from mindspore.ops.composite.array_ops import repeat_interleave, repeat_elements, sequence_mask +from mindspore.ops.function.array_func import repeat_interleave, repeat_elements, sequence_mask from mindspore.ops.composite.vmap_ops import _VmapGeneralPreprocess, _VmapGeneralRule from mindspore.ops.function.clip_func import clip_by_value diff --git a/mindspore/python/mindspore/ops/composite/array_ops.py b/mindspore/python/mindspore/ops/composite/array_ops.py deleted file mode 100644 index 1cb8dac0309..00000000000 --- a/mindspore/python/mindspore/ops/composite/array_ops.py +++ /dev/null @@ -1,237 +0,0 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -"""array Operations.""" -from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils -from mindspore.common import dtype as mstype -from mindspore.common._register_for_tensor import tensor_operator_registry -from mindspore._checkparam import Validator as validator -from mindspore._checkparam import Rel -from mindspore.ops.primitive import constexpr -from mindspore.ops import functional as F -from mindspore.ops import operations as P - - -#TODO: remove comment -@constexpr -def _check_is_int(arg_value, arg_name, op_name): - arg_value = validator.check_is_int(arg_value, arg_name, op_name) - return arg_value - - -#TODO: remove comment -@constexpr -def _check_positive_int(arg_value, arg_name, op_name): - arg_value = validator.check_positive_int(arg_value, arg_name, op_name) - return arg_value - - -#TODO: remove comment -@constexpr -def _check_axis_range(arg_value, limit, arg_name, op_name): - arg_value = validator.check_int_range(arg_value, -limit, limit, Rel.INC_LEFT, arg_name, op_name) - return arg_value - - -#TODO: remove comment -@constexpr -def _cal_repeat_dims(x_rank, rep, expand_axis): - rep_dims = [1] * (x_rank + 1) - rep_dims[expand_axis] = rep - return tuple(rep_dims) - - -@constexpr -def _cal_reshape(x_shape, rep, axis): - x_reshape = list(x_shape) - x_reshape[axis] *= rep - return tuple(x_reshape) - - -def repeat_interleave(x, repeats, dim=None): - """ - Repeat elements of a tensor along an axis, like `numpy.repeat`. - - Args: - x (Tensor): The tensor to repeat values for. Must be of type: float16, - float32, int8, uint8, int16, int32, or int64. - repeats (int): The number of times to repeat, must be positive. - dim (int, optional): The axis along which to repeat, if None, defaults to 0. - - Returns: - One tensor with values repeated along the specified axis. If x has shape - (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ..., - si * repeats, ..., sn). The output type will be the same as the type of `x`. - - Supported Platforms: - ``Ascend`` ``GPU`` ``CPU`` - - Examples: - >>> import mindspore - >>> from mindspore import Tensor, ops - >>> import numpy as np - >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) - >>> output = ops.repeat_interleave(x, repeats=2, dim=0) - >>> print(output) - [[0 1 2] - [0 1 2] - [3 4 5] - [3 4 5]] - """ - return repeat_elements(x, repeats, dim) - - -def repeat_elements(x, rep, axis=0): - """ - Repeat elements of a tensor along an axis, like `np.repeat` . - - Args: - x (Tensor): The tensor to repeat values for. Must be of type: float16, - float32, int8, uint8, int16, int32, or int64. - rep (int): The number of times to repeat, must be positive. - axis (int): The axis along which to repeat, default 0. - - Returns: - One tensor with values repeated along the specified axis. If x has shape - (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ..., - si * rep, ..., sn). The output type will be the same as the type of `x`. - - Supported Platforms: - ``Ascend`` ``GPU`` ``CPU`` - - Examples: - >>> from mindspore import Tensor, ops - >>> import mindspore - >>> import numpy as np - >>> # case 1 : repeat on axis 0 - >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) - >>> output = ops.repeat_elements(x, rep = 2, axis = 0) - >>> print(output) - [[0 1 2] - [0 1 2] - [3 4 5] - [3 4 5]] - >>> # case 2 : repeat on axis 1 - >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) - >>> output = ops.repeat_elements(x, rep = 2, axis = 1) - >>> print(output) - [[0 0 1 1 2 2] - [3 3 4 4 5 5]] - """ - const_utils.check_type_valid(F.dtype(x), mstype.number_type, 'input x') - rep = _check_positive_int(rep, "rep", "repeat_elements") - axis = _check_is_int(axis, "axis", "repeat_elements") - - shape_op = P.Shape() - rank_op = P.Rank() - tile_op = P.Tile() - expand_dims_op = P.ExpandDims() - reshape_op = P.Reshape() - - x_rank = rank_op(x) - axis = _check_axis_range(axis, x_rank, "axis", "repeat_elements") - - expand_axis = axis + 1 - x_expand = expand_dims_op(x, expand_axis) - rep_dims = _cal_repeat_dims(x_rank, rep, expand_axis) - x_expand = tile_op(x_expand, rep_dims) - x_shape = shape_op(x) - x_reshape = _cal_reshape(x_shape, rep, axis) - x_rep = reshape_op(x_expand, x_reshape) - - return x_rep - - -tensor_operator_registry.register('repeat_elements', repeat_elements) - - - - -def sequence_mask(lengths, maxlen=None): - """ - Returns a mask tensor representing the first N positions of each cell. - - If `lengths` has shape :math:`(d_1, d_2, ..., d_n)`, then the resulting tensor mask has type and shape - :math:`(d_1, d_2, ..., d_n, maxlen)`, with mask :math:`[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])`. - - Args: - lengths (Tensor): Tensor to calculate the mask for. All values in this tensor should be - less than or equal to `maxlen`. Values greater than `maxlen` will be treated as `maxlen`. - maxlen (int): size of the last dimension of returned tensor. Must be positive and same - type as elements in `lengths`. Default is None. - - Returns: - One mask tensor of shape `lengths.shape + (maxlen,)` . - - Raises: - TypeError: If `lengths` is not a Tensor. - TypeError: If `maxlen` is not an int. - TypeError: If dtype of `lengths` is neither int32 nor int64. - - Supported Platforms: - ``GPU`` - - Examples: - >>> from mindspore import Tensor, ops - >>> import mindspore - >>> import numpy as np - >>> # case 1: When maxlen is assigned - >>> x = Tensor(np.array([1, 2, 3, 4])) - >>> output = ops.sequence_mask(x, 5) - >>> print(output) - [[ True False False False False] - [ True True False False False] - [ True True True False False] - [ True True True True False]] - >>> # case 2: When there is 0 in x - >>> x = Tensor(np.array([[1, 3], [2, 0]])) - >>> output = ops.sequence_mask(x, 5) - >>> print(output) - [[[ True False False False False] - [ True True True False False]] - [[ True True False False False] - [False False False False False]]] - >>> # case 3: when the maxlen is not assigned - >>> x = Tensor(np.array([[1, 3], [2, 4]])) - >>> output = ops.sequence_mask(x) - >>> print(output) - [[[ True False False False ] - [ True True True False ]] - [[ True True False False ] - [ True True True True ]]] - """ - - argmax_op = P.ArgMaxWithValue() - reshape_op = P.Reshape() - range_op = P.Range() - expand_op = P.ExpandDims() - cast_op = P.Cast() - to_tensor_op = P.ScalarToTensor() - - const_utils.check_type_valid(F.dtype(lengths), [mstype.int64, mstype.int32], 'lengths') - - if maxlen is None: - flatten_data = reshape_op(lengths, (-1,)) - flatten_data = cast_op(flatten_data, mstype.float32) - _, value = argmax_op(flatten_data) - maxlen = cast_op(value, mstype.int32) - else: - maxlen = _check_positive_int(maxlen, "maxlen", "sequence_mask") - maxlen = to_tensor_op(maxlen, mstype.int32) - - range_vector = range_op(to_tensor_op(0, mstype.int32), maxlen - , to_tensor_op(1, mstype.int32)) - mask = expand_op(lengths, -1) - result = range_vector < mask - return result diff --git a/mindspore/python/mindspore/ops/function/__init__.py b/mindspore/python/mindspore/ops/function/__init__.py index b54224afada..59ee351a8b7 100644 --- a/mindspore/python/mindspore/ops/function/__init__.py +++ b/mindspore/python/mindspore/ops/function/__init__.py @@ -139,6 +139,9 @@ from .array_func import ( lstsq, mvlgamma, argsort, + sequence_mask, + repeat_elements, + repeat_interleave, ) from .parameter_func import ( assign, diff --git a/mindspore/python/mindspore/ops/function/array_func.py b/mindspore/python/mindspore/ops/function/array_func.py index 8220dea9702..639151729bc 100644 --- a/mindspore/python/mindspore/ops/function/array_func.py +++ b/mindspore/python/mindspore/ops/function/array_func.py @@ -25,6 +25,7 @@ from mindspore.ops.primitive import constexpr import mindspore.ops.function as ops from mindspore.ops import functional as F from mindspore.ops.operations._inner_ops import DynamicBroadcastTo +from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils from mindspore.ops.operations.array_ops import ( UniqueConsecutive, @@ -5978,6 +5979,198 @@ def count_nonzero(x, dims=None): return count_nonzero_(x) +@constexpr +def _check_is_int(arg_value, arg_name, op_name): + arg_value = validator.check_is_int(arg_value, arg_name, op_name) + return arg_value + + +@constexpr +def _check_positive_int(arg_value, arg_name, op_name): + arg_value = validator.check_positive_int(arg_value, arg_name, op_name) + return arg_value + + +@constexpr +def _check_axis_range(arg_value, limit, arg_name, op_name): + arg_value = validator.check_int_range(arg_value, -limit, limit, Rel.INC_LEFT, arg_name, op_name) + return arg_value + + +@constexpr +def _cal_repeat_dims(x_rank, rep, expand_axis): + rep_dims = [1] * (x_rank + 1) + rep_dims[expand_axis] = rep + return tuple(rep_dims) + + +@constexpr +def _cal_reshape(x_shape, rep, axis): + x_reshape = list(x_shape) + x_reshape[axis] *= rep + return tuple(x_reshape) + + +def repeat_interleave(x, repeats, dim=None): + """ + Repeat elements of a tensor along an axis, like `numpy.repeat`. + + Args: + x (Tensor): The tensor to repeat values for. Must be of type: float16, + float32, int8, uint8, int16, int32, or int64. + repeats (int): The number of times to repeat, must be positive. + dim (int, optional): The axis along which to repeat, if None, defaults to 0. + + Returns: + One tensor with values repeated along the specified axis. If x has shape + (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ..., + si * repeats, ..., sn). The output type will be the same as the type of `x`. + + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + + Examples: + >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) + >>> output = ops.repeat_interleave(x, repeats=2, dim=0) + >>> print(output) + [[0 1 2] + [0 1 2] + [3 4 5] + [3 4 5]] + """ + return repeat_elements(x, repeats, dim) + + +def repeat_elements(x, rep, axis=0): + """ + Repeat elements of a tensor along an axis, like `np.repeat` . + + Args: + x (Tensor): The tensor to repeat values for. Must be of type: float16, + float32, int8, uint8, int16, int32, or int64. + rep (int): The number of times to repeat, must be positive. + axis (int): The axis along which to repeat, default 0. + + Returns: + One tensor with values repeated along the specified axis. If x has shape + (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ..., + si * rep, ..., sn). The output type will be the same as the type of `x`. + + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + + Examples: + >>> # case 1 : repeat on axis 0 + >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) + >>> output = ops.repeat_elements(x, rep = 2, axis = 0) + >>> print(output) + [[0 1 2] + [0 1 2] + [3 4 5] + [3 4 5]] + >>> # case 2 : repeat on axis 1 + >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) + >>> output = ops.repeat_elements(x, rep = 2, axis = 1) + >>> print(output) + [[0 0 1 1 2 2] + [3 3 4 4 5 5]] + """ + const_utils.check_type_valid(F.dtype(x), mstype.number_type, 'input x') + rep = _check_positive_int(rep, "rep", "repeat_elements") + axis = _check_is_int(axis, "axis", "repeat_elements") + shape_op = P.Shape() + rank_op = P.Rank() + tile_op = P.Tile() + expand_dims_op = P.ExpandDims() + reshape_op = P.Reshape() + x_rank = rank_op(x) + axis = _check_axis_range(axis, x_rank, "axis", "repeat_elements") + expand_axis = axis + 1 + x_expand = expand_dims_op(x, expand_axis) + rep_dims = _cal_repeat_dims(x_rank, rep, expand_axis) + x_expand = tile_op(x_expand, rep_dims) + x_shape = shape_op(x) + x_reshape = _cal_reshape(x_shape, rep, axis) + x_rep = reshape_op(x_expand, x_reshape) + return x_rep + + +def sequence_mask(lengths, maxlen=None): + """ + Returns a mask tensor representing the first N positions of each cell. + + If `lengths` has shape :math:`(d_1, d_2, ..., d_n)`, then the resulting tensor mask has type and shape + :math:`(d_1, d_2, ..., d_n, maxlen)`, with mask :math:`[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])`. + + Args: + lengths (Tensor): Tensor to calculate the mask for. All values in this tensor should be + less than or equal to `maxlen`. Values greater than `maxlen` will be treated as `maxlen`. + maxlen (int): size of the last dimension of returned tensor. Must be positive and same + type as elements in `lengths`. Default is None. + + Returns: + One mask tensor of shape `lengths.shape + (maxlen,)` . + + Raises: + TypeError: If `lengths` is not a Tensor. + TypeError: If `maxlen` is not an int. + TypeError: If dtype of `lengths` is neither int32 nor int64. + + Supported Platforms: + ``GPU`` + + Examples: + >>> # case 1: When maxlen is assigned + >>> x = Tensor(np.array([1, 2, 3, 4])) + >>> output = ops.sequence_mask(x, 5) + >>> print(output) + [[ True False False False False] + [ True True False False False] + [ True True True False False] + [ True True True True False]] + >>> # case 2: When there is 0 in x + >>> x = Tensor(np.array([[1, 3], [2, 0]])) + >>> output = ops.sequence_mask(x, 5) + >>> print(output) + [[[ True False False False False] + [ True True True False False]] + [[ True True False False False] + [False False False False False]]] + >>> # case 3: when the maxlen is not assigned + >>> x = Tensor(np.array([[1, 3], [2, 4]])) + >>> output = ops.sequence_mask(x) + >>> print(output) + [[[ True False False False ] + [ True True True False ]] + [[ True True False False ] + [ True True True True ]]] + """ + + argmax_op = P.ArgMaxWithValue() + reshape_op = P.Reshape() + range_op = P.Range() + expand_op = P.ExpandDims() + cast_op = P.Cast() + to_tensor_op = P.ScalarToTensor() + + const_utils.check_type_valid(F.dtype(lengths), [mstype.int64, mstype.int32], 'lengths') + + if maxlen is None: + flatten_data = reshape_op(lengths, (-1,)) + flatten_data = cast_op(flatten_data, mstype.float32) + _, value = argmax_op(flatten_data) + maxlen = cast_op(value, mstype.int32) + else: + maxlen = _check_positive_int(maxlen, "maxlen", "sequence_mask") + maxlen = to_tensor_op(maxlen, mstype.int32) + + range_vector = range_op(to_tensor_op(0, mstype.int32), maxlen + , to_tensor_op(1, mstype.int32)) + mask = expand_op(lengths, -1) + result = range_vector < mask + return result + + __all__ = [ 'unique', 'unique_with_pad', @@ -6090,6 +6283,9 @@ __all__ = [ 'diagonal', 'lstsq', 'mvlgamma', - 'argsort' + 'argsort', + 'sequence_mask', + 'repeat_elements', + 'repeat_interleave' ] __all__.sort() diff --git a/mindspore/python/mindspore/ops/functional.py b/mindspore/python/mindspore/ops/functional.py index b7ab0481d87..3bc2780e806 100644 --- a/mindspore/python/mindspore/ops/functional.py +++ b/mindspore/python/mindspore/ops/functional.py @@ -27,7 +27,6 @@ from mindspore.ops.operations.math_ops import Median from mindspore.ops.operations.array_ops import UniqueConsecutive, Triu from mindspore.ops.operations.nn_ops import AdaptiveMaxPool2D from mindspore.ops.operations.math_ops import Roll -from mindspore.ops.composite.array_ops import repeat_interleave from mindspore.ops.composite.math_ops import mm typeof = Primitive('typeof') @@ -398,6 +397,7 @@ tensor_operator_registry.register('deg2rad', deg2rad) tensor_operator_registry.register('copysign', copysign) tensor_operator_registry.register('roll', Roll) tensor_operator_registry.register('rot90', rot90) +tensor_operator_registry.register('repeat_elements', repeat_elements) __all__ = [name for name in dir() if name[0] != "_"] __all__.remove('Primitive') diff --git a/tests/OWNERS b/tests/OWNERS index 0f91148a854..399fbfe4984 100644 --- a/tests/OWNERS +++ b/tests/OWNERS @@ -64,6 +64,7 @@ approvers: - mengyuanli - liujunzhu - luoyang42 +- changzherui reviewers: - nicholas_yhr - liubuyu