forked from mindspore-Ecosystem/mindspore
update Model Zoo README and googlenet README
This commit is contained in:
parent
64d078da79
commit
08952b186e
|
@ -27,15 +27,15 @@ In order to facilitate developers to enjoy the benefits of MindSpore framework,
|
||||||
- [AlexNet](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet/README.md)
|
- [AlexNet](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet/README.md)
|
||||||
- [LeNet](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet/README.md)
|
- [LeNet](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet/README.md)
|
||||||
- [LeNet_Quant](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet_quant/README.md)
|
- [LeNet_Quant](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet_quant/README.md)
|
||||||
|
- [MobileNetV2](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/mobilenetv2/README.md)
|
||||||
|
- [MobileNetV2_Quant](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/mobilenetv2_quant/README.md)
|
||||||
|
- [MobileNetV3](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/mobilenetv3/README.md)
|
||||||
- [InceptionV3](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv3/README.md)
|
- [InceptionV3](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv3/README.md)
|
||||||
- [Object Detection and Segmentation](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv)
|
- [Object Detection and Segmentation](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv)
|
||||||
- [DeepLabV3](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/deeplabv3/README.md)
|
- [DeepLabV3](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/deeplabv3/README.md)
|
||||||
- [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/faster_rcnn/README.md)
|
- [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/faster_rcnn/README.md)
|
||||||
- [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53/README.md)
|
- [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53/README.md)
|
||||||
- [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18/README.md)
|
- [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18/README.md)
|
||||||
- [MobileNetV2](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/mobilenetv2/README.md)
|
|
||||||
- [MobileNetV2_Quant](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/mobilenetv2_quant/README.md)
|
|
||||||
- [MobileNetV3](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/mobilenetv3/README.md)
|
|
||||||
- [MaskRCNN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/maskrcnn/README.md)
|
- [MaskRCNN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/maskrcnn/README.md)
|
||||||
- [SSD](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/ssd/README.md)
|
- [SSD](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/ssd/README.md)
|
||||||
- [Warp-CTC](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/warpctc/README.md)
|
- [Warp-CTC](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/warpctc/README.md)
|
||||||
|
|
|
@ -36,7 +36,7 @@ GoogleNet, a 22 layers deep network, was proposed in 2014 and won the first plac
|
||||||
|
|
||||||
# [Model Architecture](#contents)
|
# [Model Architecture](#contents)
|
||||||
|
|
||||||
Specifically, the GoogleNet contains numerous inception modules, which are connected together to go deeper. In general, an inception module with dimensionality reduction consists of **1×1 conv**, **3×3 conv**, **5×5 conv**, and **3×3 max pooling**, which are done altogether for the previous input, and stack together again at output.
|
Specifically, the GoogleNet contains numerous inception modules, which are connected together to go deeper. In general, an inception module with dimensionality reduction consists of **1×1 conv**, **3×3 conv**, **5×5 conv**, and **3×3 max pooling**, which are done altogether for the previous input, and stack together again at output. In our model architecture, the kernel size used in inception module is 3×3 instead of 5×5.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue