forked from mindspore-Ecosystem/mindspore
!6747 Adjust the current NASNet-A-Mobile training setting
Merge pull request !6747 from dessyang/master
This commit is contained in:
commit
05c4c7593f
|
@ -40,7 +40,7 @@ Parameters for both training and evaluating can be set in config.py
|
||||||
'rank': 0, # local rank of distributed
|
'rank': 0, # local rank of distributed
|
||||||
'group_size': 1, # world size of distributed
|
'group_size': 1, # world size of distributed
|
||||||
'work_nums': 8, # number of workers to read the data
|
'work_nums': 8, # number of workers to read the data
|
||||||
'epoch_size': 250, # total epoch numbers
|
'epoch_size': 500, # total epoch numbers
|
||||||
'keep_checkpoint_max': 100, # max numbers to keep checkpoints
|
'keep_checkpoint_max': 100, # max numbers to keep checkpoints
|
||||||
'ckpt_path': './checkpoint/', # save checkpoint path
|
'ckpt_path': './checkpoint/', # save checkpoint path
|
||||||
'is_save_on_master': 1 # save checkpoint on rank0, distributed parameters
|
'is_save_on_master': 1 # save checkpoint on rank0, distributed parameters
|
||||||
|
|
|
@ -23,9 +23,9 @@ nasnet_a_mobile_config_gpu = edict({
|
||||||
'rank': 0,
|
'rank': 0,
|
||||||
'group_size': 1,
|
'group_size': 1,
|
||||||
'work_nums': 8,
|
'work_nums': 8,
|
||||||
'epoch_size': 312,
|
'epoch_size': 500,
|
||||||
'keep_checkpoint_max': 100,
|
'keep_checkpoint_max': 100,
|
||||||
'ckpt_path': './',
|
'ckpt_path': './checkpoint/',
|
||||||
'is_save_on_master': 0,
|
'is_save_on_master': 0,
|
||||||
|
|
||||||
### Dataset Config
|
### Dataset Config
|
||||||
|
|
|
@ -28,7 +28,7 @@ from mindspore.common import set_seed
|
||||||
|
|
||||||
from src.config import nasnet_a_mobile_config_gpu as cfg
|
from src.config import nasnet_a_mobile_config_gpu as cfg
|
||||||
from src.dataset import create_dataset
|
from src.dataset import create_dataset
|
||||||
from src.nasnet_a_mobile import NASNetAMobileWithLoss, NASNetAMobileTrainOneStepWithClipGradient
|
from src.nasnet_a_mobile import NASNetAMobile, CrossEntropy
|
||||||
from src.lr_generator import get_lr
|
from src.lr_generator import get_lr
|
||||||
|
|
||||||
|
|
||||||
|
@ -68,10 +68,13 @@ if __name__ == '__main__':
|
||||||
batches_per_epoch = dataset.get_dataset_size()
|
batches_per_epoch = dataset.get_dataset_size()
|
||||||
|
|
||||||
# network
|
# network
|
||||||
net_with_loss = NASNetAMobileWithLoss(cfg)
|
net = NASNetAMobile(cfg.num_classes)
|
||||||
if args_opt.resume:
|
if args_opt.resume:
|
||||||
ckpt = load_checkpoint(args_opt.resume)
|
ckpt = load_checkpoint(args_opt.resume)
|
||||||
load_param_into_net(net_with_loss, ckpt)
|
load_param_into_net(net, ckpt)
|
||||||
|
|
||||||
|
#loss
|
||||||
|
loss = CrossEntropy(smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes, factor=cfg.aux_factor)
|
||||||
|
|
||||||
# learning rate schedule
|
# learning rate schedule
|
||||||
lr = get_lr(lr_init=cfg.lr_init, lr_decay_rate=cfg.lr_decay_rate,
|
lr = get_lr(lr_init=cfg.lr_init, lr_decay_rate=cfg.lr_decay_rate,
|
||||||
|
@ -82,20 +85,18 @@ if __name__ == '__main__':
|
||||||
# optimizer
|
# optimizer
|
||||||
decayed_params = []
|
decayed_params = []
|
||||||
no_decayed_params = []
|
no_decayed_params = []
|
||||||
for param in net_with_loss.trainable_params():
|
for param in net.trainable_params():
|
||||||
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
|
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
|
||||||
decayed_params.append(param)
|
decayed_params.append(param)
|
||||||
else:
|
else:
|
||||||
no_decayed_params.append(param)
|
no_decayed_params.append(param)
|
||||||
group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
|
group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
|
||||||
{'params': no_decayed_params},
|
{'params': no_decayed_params},
|
||||||
{'order_params': net_with_loss.trainable_params()}]
|
{'order_params': net.trainable_params()}]
|
||||||
optimizer = RMSProp(group_params, lr, decay=cfg.rmsprop_decay, weight_decay=cfg.weight_decay,
|
optimizer = RMSProp(group_params, lr, decay=cfg.rmsprop_decay, weight_decay=cfg.weight_decay,
|
||||||
momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale)
|
momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale)
|
||||||
|
|
||||||
net_with_grads = NASNetAMobileTrainOneStepWithClipGradient(net_with_loss, optimizer)
|
model = Model(net, loss_fn=loss, optimizer=optimizer)
|
||||||
net_with_grads.set_train()
|
|
||||||
model = Model(net_with_grads)
|
|
||||||
|
|
||||||
print("============== Starting Training ==============")
|
print("============== Starting Training ==============")
|
||||||
loss_cb = LossMonitor(per_print_times=batches_per_epoch)
|
loss_cb = LossMonitor(per_print_times=batches_per_epoch)
|
||||||
|
|
Loading…
Reference in New Issue