forked from mindspore-Ecosystem/mindspore
!9209 Delete sequence mask function and fix comment in Interpolate function.
From: @liangzhibo Reviewed-by: @zh_qh,@chenfei52,@ginfung Signed-off-by: @zh_qh
This commit is contained in:
commit
053bcd0266
|
@ -589,17 +589,15 @@ class Interpolate(Cell):
|
|||
Samples the input tensor to the given size or scale_factor. Now, only support
|
||||
bilinear interpolation.
|
||||
|
||||
Args:
|
||||
size (Union[tuple[int], list[int]]): A tuple or list of 2 int elements '(new_height, new_width)',
|
||||
the new size of the tensor. Default: None.
|
||||
scale_factor (int): The scale factor of new size of the tensor. The value should be positive integer.
|
||||
Default: None.
|
||||
align_corners (bool): If true, rescale input by '(new_height - 1) / (height - 1)', which exactly aligns
|
||||
the 4 corners of images and resized images. If false, rescale by 'new_height / height'. Default: False.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - Tensor to be resized. Input tensor must be a 4-D tensor with shape:
|
||||
math:`(batch, channels, height, width)`, with data type of float16 or float32.
|
||||
- **size** (Union[tuple[int], list[int]]): A tuple or list of 2 int elements '(new_height, new_width)',
|
||||
the new size of the tensor. One and only one of size and scale_factor can be set to None. Default: None.
|
||||
- **scale_factor** (int): The scale factor of new size of the tensor. The value should be positive integer.
|
||||
One and only one of size and scale_factor can be set to None. Default: None.
|
||||
- **align_corners** (bool): If true, rescale input by '(new_height - 1) / (height - 1)', which exactly aligns
|
||||
the 4 corners of images and resized images. If false, rescale by 'new_height / height'. Default: False.
|
||||
|
||||
Outputs:
|
||||
Resized tensor.
|
||||
|
@ -609,14 +607,14 @@ class Interpolate(Cell):
|
|||
scale_factor * width)` in float32
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.ops import operations as P
|
||||
>>> tensor = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mindspore.float32)
|
||||
>>> interpolate = nn.Interpolate()
|
||||
>>> result = interpolate(tensor, size=(5,5))
|
||||
>>> assert result.shape == (1, 1, 5, 5)
|
||||
>>> print(result.shape)
|
||||
(1, 1, 5, 5)
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Interpolate, self).__init__()
|
||||
|
|
|
@ -71,16 +71,6 @@ def get_bprop_zeros(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.SequenceMask)
|
||||
def get_bprop_sequence_mask(self):
|
||||
"""Generate bprop for SequenceMask"""
|
||||
|
||||
def bprop(lengths, dtype, max_length, out, dout):
|
||||
return zeros_like(dims), zeros_like(max_length)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.DType)
|
||||
def get_bprop_dtype(self):
|
||||
"""Generate bprop for DType"""
|
||||
|
|
|
@ -184,7 +184,6 @@ __all__ = [
|
|||
'Fill',
|
||||
'Ones',
|
||||
'Zeros',
|
||||
'SequenceMask',
|
||||
'OnesLike',
|
||||
'ZerosLike',
|
||||
'Select',
|
||||
|
|
Loading…
Reference in New Issue