diff --git a/model_zoo/research/cv/retinanet_resnet101/README_CN.md b/model_zoo/research/cv/retinanet_resnet101/README_CN.md
new file mode 100644
index 00000000000..a433ea2b43c
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/README_CN.md
@@ -0,0 +1,315 @@
+# 1. 内容
+
+
+
+- [Retinanet 描述](#-Retinanet-描述)
+- [模型架构](#模型架构)
+- [数据集](#数据集)
+- [环境要求](#环境要求)
+- [脚本说明](#脚本说明)
+ - [脚本和示例代码](#脚本和示例代码)
+ - [脚本参数](#脚本参数)
+ - [训练过程](#训练过程)
+ - [用法](#用法)
+ - [运行](#运行)
+ - [结果](#结果)
+ - [评估过程](#评估过程)
+ - [用法](#usage)
+ - [运行](#running)
+ - [结果](#outcome)
+ - [模型说明](#模型说明)
+ - [性能](#性能)
+ - [训练性能](#训练性能)
+ - [推理性能](#推理性能)
+- [随机情况的描述](#随机情况的描述)
+- [ModelZoo 主页](#modelzoo-主页)
+
+
+
+## [Retinanet 描述](#content)
+
+RetinaNet算法源自2018年Facebook AI Research的论文 Focal Loss for Dense Object Detection。该论文最大的贡献在于提出了Focal Loss用于解决类别不均衡问题,从而创造了RetinaNet(One Stage目标检测算法)这个精度超越经典Two Stage的Faster-RCNN的目标检测网络。
+
+[论文](https://arxiv.org/pdf/1708.02002.pdf)
+Lin T Y , Goyal P , Girshick R , et al. Focal Loss for Dense Object Detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017:2999-3007.
+
+## [模型架构](#content)
+
+Retinanet的整体网络架构如下所示:
+
+[链接](https://arxiv.org/pdf/1708.02002.pdf)
+
+## [数据集](#content)
+
+数据集可参考文献.
+
+MSCOCO2017
+
+- 数据集大小: 19.3G, 123287张80类彩色图像
+
+ - 训练:19.3G, 118287张图片
+
+ - 测试:1814.3M, 5000张图片
+
+- 数据格式:RGB图像.
+
+ - 注意:数据将在src/dataset.py 中被处理
+
+## [环境要求](#content)
+
+- 硬件(Ascend)
+ - 使用Ascend处理器准备硬件环境。
+- 架构
+ - [MindSpore](https://www.mindspore.cn/install/en)
+- 想要获取更多信息,请检查以下资源:
+ - [MindSpore 教程](https://www.mindspore.cn/tutorial/training/en/master/index.html)
+ - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
+
+## [脚本说明](#content)
+
+### [脚本和示例代码](#content)
+
+```shell
+.
+└─Retinanet_resnet101
+ ├─README.md
+ ├─scripts
+ ├─run_single_train.sh # 使用Ascend环境单卡训练
+ ├─run_distribute_train.sh # 使用Ascend环境八卡并行训练
+ ├─run_eval.sh # 使用Ascend环境运行推理脚本
+ ├─src
+ ├─backbone.py # 网络模型定义
+ ├─bottleneck.py # 网络颈部定义
+ ├─config.py # 参数配置
+ ├─dataset.py # 数据预处理
+ ├─retinahead.py # 网络预测头部定义
+ ├─init_params.py # 参数初始化
+ ├─lr_generator.py # 学习率生成函数
+ ├─coco_eval # coco数据集评估
+ ├─box_utils.py # 先验框设置
+ ├─_init_.py # 初始化
+ ├─train.py # 网络训练脚本
+ └─eval.py # 网络推理脚本
+
+```
+
+### [脚本参数](#content)
+
+```python
+在train.py和config.py脚本中使用到的主要参数是:
+"img_shape": [600, 600], # 图像尺寸
+"num_retinanet_boxes": 67995, # 设置的先验框总数
+"match_thershold": 0.5, # 匹配阈值
+"softnms_sigma": 0.5, # softnms算法σ值
+"nms_thershold": 0.6, # 非极大抑制阈值
+"min_score": 0.1, # 最低得分
+"max_boxes": 100, # 检测框最大数量
+"global_step": 0, # 全局步数
+"lr_init": 1e-6, # 初始学习率
+"lr_end_rate": 5e-3, # 最终学习率与最大学习率的比值
+"warmup_epochs1": 2, # 第一阶段warmup的周期数
+"warmup_epochs2": 5, # 第二阶段warmup的周期数
+"warmup_epochs3": 23, # 第三阶段warmup的周期数
+"warmup_epochs4": 60, # 第四阶段warmup的周期数
+"warmup_epochs5": 160, # 第五阶段warmup的周期数
+"momentum": 0.9, # momentum
+"weight_decay": 1.5e-4, # 权重衰减率
+"num_default": [9, 9, 9, 9, 9], # 单个网格中先验框的个数
+"extras_out_channels": [256, 256, 256, 256, 256], # 特征层输出通道数
+"feature_size": [75, 38, 19, 10, 5], # 特征层尺寸
+"aspect_ratios": [(0.5,1.0,2.0), (0.5,1.0,2.0), (0.5,1.0,2.0), (0.5,1.0,2.0), (0.5,1.0,2.0)], # 先验框大小变化比值
+"steps": ( 8, 16, 32, 64, 128), # 先验框设置步长
+"anchor_size":(32, 64, 128, 256, 512), # 先验框尺寸
+"prior_scaling": (0.1, 0.2), # 用于调节回归与回归在loss中占的比值
+"gamma": 2.0, # focal loss中的参数
+"alpha": 0.75, # focal loss中的参数
+"mindrecord_dir": "/opr/root/data/MindRecord_COCO", # mindrecord文件路径
+"coco_root": "/opr/root/data/", # coco数据集路径
+"train_data_type": "train2017", # train图像的文件夹名
+"val_data_type": "val2017", # val图像的文件夹名
+"instances_set": "annotations_trainval2017/annotations/instances_{}.json", # 标签文件路径
+"coco_classes": ('background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', # coco数据集的种类
+ 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
+ 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
+ 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
+ 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
+ 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
+ 'kite', 'baseball bat', 'baseball glove', 'skateboard',
+ 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
+ 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
+ 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
+ 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
+ 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
+ 'refrigerator', 'book', 'clock', 'vase', 'scissors',
+ 'teddy bear', 'hair drier', 'toothbrush'),
+"num_classes": 81, # 数据集类别数
+"voc_root": "", # voc数据集路径
+"voc_dir": "",
+"image_dir": "", # 图像路径
+"anno_path": "", # 标签文件路径
+"save_checkpoint": True, # 保存checkpoint
+"save_checkpoint_epochs": 1, # 保存checkpoint epoch数
+"keep_checkpoint_max":1, # 保存checkpoint的最大数量
+"save_checkpoint_path": "./model", # 保存checkpoint的路径
+"finish_epoch":0, # 已经运行完成的 epoch 数
+"checkpoint_path":"/opr/root/reretina/retinanet2/LOG0/model/retinanet-400_458.ckpt" # 用于验证的checkpoint路径
+```
+
+### [训练过程](#content)
+
+#### 用法
+
+您可以使用python或shell脚本进行训练。shell脚本的用法如下:
+
+- Ascend:
+
+```训练
+# 八卡并行训练示例:
+
+创建 RANK_TABLE_FILE
+sh run_distribute_train.sh DEVICE_NUM EPOCH_SIZE LR DATASET RANK_TABLE_FILE PRE_TRAINED(optional) PRE_TRAINED_EPOCH_SIZE(optional)
+
+# 单卡训练示例:
+
+sh run_distribute_train.sh DEVICE_ID EPOCH_SIZE LR DATASET PRE_TRAINED(optional) PRE_TRAINED_EPOCH_SIZE(optional)
+
+```
+
+> 注意:
+
+ RANK_TABLE_FILE相关参考资料见[链接](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html), 获取device_ip方法详见[链接](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools).
+
+#### 运行
+
+``` 运行
+# 训练示例
+
+ python:
+ data和存储mindrecord文件的路径在config里设置
+
+ # 单卡训练示例:
+
+ python train.py
+ shell:
+ Ascend:
+
+ # 八卡并行训练示例(在retinanet目录下运行):
+
+ sh scripts/run_distribute_train.sh 8 500 0.1 coco RANK_TABLE_FILE(创建的RANK_TABLE_FILE的地址) PRE_TRAINED(预训练checkpoint地址) PRE_TRAINED_EPOCH_SIZE(预训练EPOCH大小)
+ 例如:sh scripts/run_distribute_train.sh 8 500 0.1 coco scripts/rank_table_8pcs.json /dataset/retinanet-322_458.ckpt 322
+
+ # 单卡训练示例(在retinanet目录下运行):
+
+ sh scripts/run_single_train.sh 0 500 0.1 coco /dataset/retinanet-322_458.ckpt 322
+
+```
+
+#### 结果
+
+训练结果将存储在示例路径中。checkpoint将存储在 `./model` 路径下,训练日志将被记录到 `./log.txt` 中,训练日志部分示例如下:
+
+``` 训练日志
+epoch: 397 step: 458, loss is 0.6153226
+lr:[0.000598]
+epoch time: 313364.642 ms, per step time: 684.202 ms
+epoch: 398 step: 458, loss is 0.5491791
+lr:[0.000544]
+epoch time: 313486.094 ms, per step time: 684.467 ms
+epoch: 399 step: 458, loss is 0.51681435
+lr:[0.000511]
+epoch time: 313514.348 ms, per step time: 684.529 ms
+epoch: 400 step: 458, loss is 0.4305706
+lr:[0.000500]
+epoch time: 314138.455 ms, per step time: 685.892 ms
+```
+
+### [评估过程](#content)
+
+#### 用法
+
+您可以使用python或shell脚本进行训练。shell脚本的用法如下:
+
+```eval
+sh scripts/run_eval.sh [DATASET] [DEVICE_ID]
+```
+
+#### 运行
+
+```eval运行
+# 验证示例
+
+ python:
+ Ascend: python eval.py
+ checkpoint 的路径在config里设置
+ shell:
+ Ascend: sh scripts/run_eval.sh coco 0
+```
+
+> checkpoint 可以在训练过程中产生.
+
+#### 结果
+
+计算结果将存储在示例路径中,您可以在 `eval.log` 查看.
+
+``` mAP
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.371
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.517
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.408
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.143
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.394
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.547
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.318
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.455
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.464
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.172
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.489
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.680
+
+========================================
+
+mAP: 0.3710347196613514
+```
+
+## [模型说明](#content)
+
+### [性能](#content)
+
+#### 训练性能
+
+| 参数 | Ascend |
+| -------------------------- | ------------------------------------- |
+| 模型名称 | Retinanet |
+| 运行环境 | 华为云 Modelarts |
+| 上传时间 | 10/03/2021 |
+| MindSpore 版本 | 1.0.1 |
+| 数据集 | 123287 张图片 |
+| Batch_size | 32 |
+| 训练参数 | src/config.py |
+| 优化器 | Momentum |
+| 损失函数 | Focal loss |
+| 最终损失 | 0.43 |
+| 精确度 (8p) | mAP[0.3710] |
+| 训练总时间 (8p) | 34h50m20s |
+| 脚本 | [Retianet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/Retinanet_resnet101) |
+
+#### 推理性能
+
+| 参数 | Ascend |
+| ------------------- | :-------------------------- |
+| 模型名称 | Retinanet |
+| 运行环境 | 华为云 Modelarts |
+| 上传时间 | 10/03/2021 |
+| MindSpore 版本 | 1.0.1 |
+| 数据集 | 5k 张图片 |
+| Batch_size | 1 |
+| 精确度 | mAP[0.3710] |
+| 总时间 | 10 mins and 50 seconds |
+
+# [随机情况的描述](#内容)
+
+在 `dataset.py` 脚本中, 我们在 `create_dataset` 函数中设置了随机种子. 我们在 `train.py` 脚本中也设置了随机种子.
+
+# [ModelZoo 主页](#内容)
+
+请核对官方 [主页](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
\ No newline at end of file
diff --git a/model_zoo/research/cv/retinanet_resnet101/eval.py b/model_zoo/research/cv/retinanet_resnet101/eval.py
new file mode 100644
index 00000000000..3fa31a1b34f
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/eval.py
@@ -0,0 +1,115 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# less required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+"""Evaluation for retinanet"""
+
+import os
+import argparse
+import time
+import numpy as np
+from mindspore import context, Tensor
+from mindspore.train.serialization import load_checkpoint, load_param_into_net
+from src.retinahead import retinahead, retinanetInferWithDecoder
+from src.backbone import resnet101
+from src.dataset import create_retinanet_dataset, data_to_mindrecord_byte_image, voc_data_to_mindrecord
+from src.config import config
+from src.coco_eval import metrics
+from src.box_utils import default_boxes
+
+
+def retinanet_eval(dataset_path, ckpt_path):
+ """retinanet evaluation."""
+ batch_size = 1
+ ds = create_retinanet_dataset(dataset_path, batch_size=batch_size, repeat_num=1, is_training=False)
+ backbone = resnet101(config.num_classes)
+ net = retinahead(backbone, config)
+ net = retinanetInferWithDecoder(net, Tensor(default_boxes), config)
+ print("Load Checkpoint!")
+ param_dict = load_checkpoint(ckpt_path)
+ net.init_parameters_data()
+ load_param_into_net(net, param_dict)
+
+ net.set_train(False)
+ i = batch_size
+ total = ds.get_dataset_size() * batch_size
+ start = time.time()
+ pred_data = []
+ print("\n========================================\n")
+ print("total images num: ", total)
+ print("Processing, please wait a moment.")
+ for data in ds.create_dict_iterator(output_numpy=True):
+ img_id = data['img_id']
+ img_np = data['image']
+ image_shape = data['image_shape']
+
+ output = net(Tensor(img_np))
+ for batch_idx in range(img_np.shape[0]):
+ pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
+ "box_scores": output[1].asnumpy()[batch_idx],
+ "img_id": int(np.squeeze(img_id[batch_idx])),
+ "image_shape": image_shape[batch_idx]})
+ percent = round(i / total * 100., 2)
+
+ print(f' {str(percent)} [{i}/{total}]', end='\r')
+ i += batch_size
+ cost_time = int((time.time() - start) * 1000)
+ print(f' 100% [{total}/{total}] cost {cost_time} ms')
+ mAP = metrics(pred_data)
+ print("\n========================================\n")
+ print(f"mAP: {mAP}")
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='retinanet evaluation')
+ parser.add_argument("--device_id", type=int, default=3, help="Device id, default is 0.")
+ parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
+ parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend", "GPU"),
+ help="run platform, only support Ascend and GPU.")
+ args_opt = parser.parse_args()
+
+ context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id)
+
+ prefix = "retinanet_eval.mindrecord"
+ mindrecord_dir = config.mindrecord_dir
+ mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
+ if args_opt.dataset == "voc":
+ config.coco_root = config.voc_root
+ if not os.path.exists(mindrecord_file):
+ if not os.path.isdir(mindrecord_dir):
+ os.makedirs(mindrecord_dir)
+ if args_opt.dataset == "coco":
+ if os.path.isdir(config.coco_root):
+ print("Create Mindrecord.")
+ data_to_mindrecord_byte_image("coco", False, prefix)
+ print("Create Mindrecord Done, at {}".format(mindrecord_dir))
+ else:
+ print("coco_root not exits.")
+ elif args_opt.dataset == "voc":
+ if os.path.isdir(config.voc_dir) and os.path.isdir(config.voc_root):
+ print("Create Mindrecord.")
+ voc_data_to_mindrecord(mindrecord_dir, False, prefix)
+ print("Create Mindrecord Done, at {}".format(mindrecord_dir))
+ else:
+ print("voc_root or voc_dir not exits.")
+ else:
+ if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
+ print("Create Mindrecord.")
+ data_to_mindrecord_byte_image("other", False, prefix)
+ print("Create Mindrecord Done, at {}".format(mindrecord_dir))
+ else:
+ print("IMAGE_DIR or ANNO_PATH not exits.")
+
+ print("Start Eval!")
+ retinanet_eval(mindrecord_file, config.checkpoint_path)
diff --git a/model_zoo/research/cv/retinanet_resnet101/export.py b/model_zoo/research/cv/retinanet_resnet101/export.py
new file mode 100644
index 00000000000..16a512cb780
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/export.py
@@ -0,0 +1,53 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+"""Export file"""
+
+import argparse
+import numpy as np
+
+from mindspore import dtype as mstype
+from mindspore import context, Tensor
+from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
+
+from src.retinahead import retinahead
+from src.backbone import resnet101
+from src.config import config
+
+parser = argparse.ArgumentParser(description="retinanet_resnet101 export")
+parser.add_argument("--device_id", type=int, default=0, help="Device id")
+parser.add_argument("--batch_size", type=int, default=1, help="batch size")
+parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
+parser.add_argument("--file_name", type=str, default="retinanet_resnet101", help="output file name.")
+parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="MINDIR", help="file format")
+parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
+ help="device target")
+args = parser.parse_args()
+
+context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
+if args.device_target == "Ascend":
+ context.set_context(device_id=args.device_id)
+
+if __name__ == "__main__":
+ network = retinahead(backbone=resnet101(80), config=config, is_training=False)
+
+ param_dict = load_checkpoint(args.ckpt_file)
+ load_param_into_net(network, param_dict)
+
+ network.set_train(False)
+
+ shape = [args.batch_size, 3] + [600, 600]
+ input_data = Tensor(np.zeros(shape), mstype.float32)
+
+ export(network, input_data, file_name=args.file_name, file_format=args.file_format)
diff --git a/model_zoo/research/cv/retinanet_resnet101/scripts/run_distribute_train.sh b/model_zoo/research/cv/retinanet_resnet101/scripts/run_distribute_train.sh
new file mode 100644
index 00000000000..ebb3a80dee9
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/scripts/run_distribute_train.sh
@@ -0,0 +1,83 @@
+#!/bin/bash
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+echo "=============================================================================================================="
+echo "Please run the script as: "
+echo "sh run_distribute_train.sh DEVICE_NUM EPOCH_SIZE LR DATASET RANK_TABLE_FILE PRE_TRAINED PRE_TRAINED_EPOCH_SIZE"
+echo "for example: sh run_distribute_train.sh 8 500 0.1 coco /data/hccl.json /opt/retinanet-500_458.ckpt(optional) 200(optional)"
+echo "It is better to use absolute path."
+echo "================================================================================================================="
+
+if [ $# != 5 ] && [ $# != 7 ]
+then
+ echo "Usage: sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] \
+[RANK_TABLE_FILE] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)"
+ exit 1
+fi
+
+# Before start distribute train, first create mindrecord files.
+BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
+cd $BASE_PATH/../ || exit
+python train.py --only_create_dataset=True
+
+echo "After running the script, the network runs in the background. The log will be generated in LOGx/log.txt"
+
+export RANK_SIZE=$1
+EPOCH_SIZE=$2
+LR=$3
+DATASET=$4
+PRE_TRAINED=$6
+PRE_TRAINED_EPOCH_SIZE=$7
+export RANK_TABLE_FILE=$5
+
+for((i=0;i env.log
+ if [ $# == 5 ]
+ then
+ python train.py \
+ --distribute=True \
+ --lr=$LR \
+ --dataset=$DATASET \
+ --device_num=$RANK_SIZE \
+ --device_id=$DEVICE_ID \
+ --epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
+ fi
+
+ if [ $# == 7 ]
+ then
+ python train.py \
+ --distribute=True \
+ --lr=$LR \
+ --dataset=$DATASET \
+ --device_num=$RANK_SIZE \
+ --device_id=$DEVICE_ID \
+ --pre_trained=$PRE_TRAINED \
+ --pre_trained_epoch_size=$PRE_TRAINED_EPOCH_SIZE \
+ --epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
+ fi
+
+ cd ../
+done
diff --git a/model_zoo/research/cv/retinanet_resnet101/scripts/run_eval.sh b/model_zoo/research/cv/retinanet_resnet101/scripts/run_eval.sh
new file mode 100644
index 00000000000..111de06e7ad
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/scripts/run_eval.sh
@@ -0,0 +1,49 @@
+#!/bin/bash
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+if [ $# != 2 ]
+then
+ echo "Usage: sh run_eval.sh [DATASET] [DEVICE_ID]"
+exit 1
+fi
+
+DATASET=$1
+echo $DATASET
+
+
+export DEVICE_NUM=1
+export DEVICE_ID=$2
+export RANK_SIZE=$DEVICE_NUM
+export RANK_ID=0
+
+BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
+cd $BASE_PATH/../ || exit
+
+if [ -d "eval$2" ];
+then
+ rm -rf ./eval$2
+fi
+
+mkdir ./eval$2
+cp ./*.py ./eval$2
+cp -r ./src ./eval$2
+cd ./eval$2 || exit
+env > env.log
+echo "start inferring for device $DEVICE_ID"
+python eval.py \
+ --dataset=$DATASET \
+ --device_id=$2 > log.txt 2>&1 &
+cd ..
diff --git a/model_zoo/research/cv/retinanet_resnet101/scripts/run_single_train.sh b/model_zoo/research/cv/retinanet_resnet101/scripts/run_single_train.sh
new file mode 100644
index 00000000000..67f87fd91e8
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/scripts/run_single_train.sh
@@ -0,0 +1,57 @@
+#!/bin/bash
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+echo "=============================================================================================================="
+echo "Please run the script as: "
+echo "sh run_single_train.sh DEVICE_ID EPOCH_SIZE LR DATASET PRE_TRAINED PRE_TRAINED_EPOCH_SIZE"
+echo "for example: sh run_single_train.sh 0 500 0.1 coco /opt/retinanet-500_458.ckpt(optional) 200(optional)"
+echo "It is better to use absolute path."
+echo "================================================================================================================="
+
+if [ $# != 4 ] && [ $# != 6 ]
+then
+ echo "Usage: sh run_single_train.sh [DEVICE_ID] [EPOCH_SIZE] [LR] [DATASET] \
+[PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)"
+ exit 1
+fi
+
+# Before start single train, first create mindrecord files.
+BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
+cd $BASE_PATH/../ || exit
+python train.py --only_create_dataset=True
+
+echo "After running the script, the network runs in the background. The log will be generated in LOGx/log.txt"
+
+export DEVICE_ID=$1
+EPOCH_SIZE=$2
+LR=$3
+DATASET=$4
+
+rm -rf LOG$1
+mkdir ./LOG$1
+cp ./*.py ./LOG$1
+cp -r ./src ./LOG$1
+cd ./LOG$1 || exit
+echo "start training for device $1"
+env > env.log
+python train.py \
+--distribute=False \
+--lr=$LR \
+--dataset=$DATASET \
+--device_num=1 \
+--device_id=$DEVICE_ID \
+--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
+cd ../
+
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/__init__.py b/model_zoo/research/cv/retinanet_resnet101/src/__init__.py
new file mode 100644
index 00000000000..e69de29bb2d
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/backbone.py b/model_zoo/research/cv/retinanet_resnet101/src/backbone.py
new file mode 100644
index 00000000000..9f2b822d771
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/src/backbone.py
@@ -0,0 +1,226 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+"""BackBone file"""
+
+import mindspore.nn as nn
+from mindspore.ops import operations as P
+
+
+def _bn(channel):
+ return nn.BatchNorm2d(channel, eps=1e-5, momentum=0.97,
+ gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
+
+
+class ConvBNReLU(nn.Cell):
+ """
+ Convolution/Depthwise fused with Batchnorm and ReLU block definition.
+
+ Args:
+ in_planes (int): Input channel.
+ out_planes (int): Output channel.
+ kernel_size (int): Input kernel size.
+ stride (int): Stride size for the first convolutional layer. Default: 1.
+ groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
+
+ Returns:
+ Tensor, output tensor.
+
+ Examples:
+ >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
+ """
+
+ def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
+ super(ConvBNReLU, self).__init__()
+ padding = 0
+ conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='same',
+ padding=padding)
+ layers = [conv, _bn(out_planes), nn.ReLU()]
+ self.features = nn.SequentialCell(layers)
+
+ def construct(self, x):
+ output = self.features(x)
+ return output
+
+
+class ResidualBlock(nn.Cell):
+ """
+ ResNet V1 residual block definition.
+
+ Args:
+ in_channel (int): Input channel.
+ out_channel (int): Output channel.
+ stride (int): Stride size for the first convolutional layer. Default: 1.
+
+ Returns:
+ Tensor, output tensor.
+
+ Examples:
+ >>> ResidualBlock(3, 256, stride=2)
+ """
+ expansion = 4
+
+ def __init__(self,
+ in_channel,
+ out_channel,
+ stride=1):
+ super(ResidualBlock, self).__init__()
+
+ channel = out_channel // self.expansion
+ self.conv1 = ConvBNReLU(in_channel, channel, kernel_size=1, stride=1)
+ self.conv2 = ConvBNReLU(channel, channel, kernel_size=3, stride=stride)
+ self.conv3 = nn.Conv2dBnAct(channel, out_channel, kernel_size=1, stride=1, pad_mode='same', padding=0,
+ has_bn=True, activation='relu')
+
+ self.down_sample = False
+ if stride != 1 or in_channel != out_channel:
+ self.down_sample = True
+ self.down_sample_layer = None
+
+ if self.down_sample:
+ self.down_sample_layer = nn.Conv2dBnAct(in_channel, out_channel,
+ kernel_size=1, stride=stride,
+ pad_mode='same', padding=0, has_bn=True, activation='relu')
+ self.add = P.TensorAdd()
+ self.relu = P.ReLU()
+
+ def construct(self, x):
+ """construct"""
+ identity = x
+ out = self.conv1(x)
+ out = self.conv2(out)
+ out = self.conv3(out)
+
+ if self.down_sample:
+ identity = self.down_sample_layer(identity)
+
+ out = self.add(out, identity)
+ out = self.relu(out)
+
+ return out
+
+
+class resnet(nn.Cell):
+ """
+ ResNet architecture.
+
+ Args:
+ block (Cell): Block for network.
+ layer_nums (list): Numbers of block in different layers.
+ in_channels (list): Input channel in each layer.
+ out_channels (list): Output channel in each layer.
+ strides (list): Stride size in each layer.
+ num_classes (int): The number of classes that the training images are belonging to.
+ Returns:
+ Tensor, output tensor.
+
+ Examples:
+ >>> ResNet(ResidualBlock,
+ >>> [3, 4, 6, 3],
+ >>> [64, 256, 512, 1024],
+ >>> [256, 512, 1024, 2048],
+ >>> [1, 2, 2, 2],
+ >>> 10)
+ """
+
+ def __init__(self,
+ block,
+ layer_nums,
+ in_channels,
+ out_channels,
+ strides,
+ num_classes):
+ super(resnet, self).__init__()
+
+ if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
+ raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!")
+ self.conv1 = ConvBNReLU(3, 64, kernel_size=7, stride=2)
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
+
+ self.layer1 = self._make_layer(block,
+ layer_nums[0],
+ in_channel=in_channels[0],
+ out_channel=out_channels[0],
+ stride=strides[0])
+ self.layer2 = self._make_layer(block,
+ layer_nums[1],
+ in_channel=in_channels[1],
+ out_channel=out_channels[1],
+ stride=strides[1])
+ self.layer3 = self._make_layer(block,
+ layer_nums[2],
+ in_channel=in_channels[2],
+ out_channel=out_channels[2],
+ stride=strides[2])
+ self.layer4 = self._make_layer(block,
+ layer_nums[3],
+ in_channel=in_channels[3],
+ out_channel=out_channels[3],
+ stride=strides[3])
+
+ def _make_layer(self, block, layer_num, in_channel, out_channel, stride):
+ """
+ Make stage network of ResNet.
+
+ Args:
+ block (Cell): Resnet block.
+ layer_num (int): Layer number.
+ in_channel (int): Input channel.
+ out_channel (int): Output channel.
+ stride (int): Stride size for the first convolutional layer.
+
+ Returns:
+ SequentialCell, the output layer.
+
+ Examples:
+ >>> _make_layer(ResidualBlock, 3, 128, 256, 2)
+ """
+ layers = []
+
+ resnet_block = ResidualBlock(in_channel, out_channel, stride=stride)
+ layers.append(resnet_block)
+
+ for _ in range(1, layer_num):
+ resnet_block = ResidualBlock(out_channel, out_channel, stride=1)
+ layers.append(resnet_block)
+
+ return nn.SequentialCell(layers)
+
+ def construct(self, x):
+ x = self.conv1(x)
+ C1 = self.maxpool(x)
+
+ C2 = self.layer1(C1)
+ C3 = self.layer2(C2)
+ C4 = self.layer3(C3)
+ C5 = self.layer4(C4)
+ return C3, C4, C5
+
+
+def resnet101(num_classes):
+ return resnet(ResidualBlock,
+ [3, 4, 23, 3],
+ [64, 256, 512, 1024],
+ [256, 512, 1024, 2048],
+ [1, 2, 2, 2],
+ num_classes)
+
+
+def resnet152(num_classes):
+ return resnet(ResidualBlock,
+ [3, 8, 36, 3],
+ [64, 256, 512, 1024],
+ [256, 512, 1024, 2048],
+ [1, 2, 2, 2],
+ num_classes)
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/bottleneck.py b/model_zoo/research/cv/retinanet_resnet101/src/bottleneck.py
new file mode 100644
index 00000000000..f66908f6573
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/src/bottleneck.py
@@ -0,0 +1,71 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+"""Bottleneck"""
+
+import mindspore.nn as nn
+from mindspore.ops import operations as P
+
+
+class FPN(nn.Cell):
+ """FPN"""
+ def __init__(self, config, backbone, is_training=True):
+ super(FPN, self).__init__()
+
+ self.backbone = backbone
+ feature_size = config.feature_size
+ self.P5_1 = nn.Conv2d(2048, 256, kernel_size=1, stride=1, pad_mode='same')
+ self.P_upsample1 = P.ResizeNearestNeighbor((feature_size[1], feature_size[1]))
+ self.P5_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, pad_mode='same')
+
+ self.P4_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, pad_mode='same')
+ self.P_upsample2 = P.ResizeNearestNeighbor((feature_size[0], feature_size[0]))
+ self.P4_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, pad_mode='same')
+
+ self.P3_1 = nn.Conv2d(512, 256, kernel_size=1, stride=1, pad_mode='same')
+ self.P3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, pad_mode='same')
+
+ self.P6_0 = nn.Conv2d(2048, 256, kernel_size=3, stride=2, pad_mode='same')
+
+ self.P7_1 = nn.ReLU()
+ self.P7_2 = nn.Conv2d(256, 256, kernel_size=3, stride=2, pad_mode='same')
+
+ self.is_training = is_training
+ if not is_training:
+ self.activation = P.Sigmoid()
+
+ def construct(self, x):
+ """construct"""
+ C3, C4, C5 = self.backbone(x)
+
+ P5 = self.P5_1(C5)
+ P5_upsampled = self.P_upsample1(P5)
+ P5 = self.P5_2(P5)
+
+ P4 = self.P4_1(C4)
+ P4 = P5_upsampled + P4
+ P4_upsampled = self.P_upsample2(P4)
+ P4 = self.P4_2(P4)
+
+ P3 = self.P3_1(C3)
+ P3 = P4_upsampled + P3
+ P3 = self.P3_2(P3)
+
+ P6 = self.P6_0(C5)
+
+ P7 = self.P7_1(P6)
+ P7 = self.P7_2(P7)
+ multi_feature = (P3, P4, P5, P6, P7)
+
+ return multi_feature
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/box_utils.py b/model_zoo/research/cv/retinanet_resnet101/src/box_utils.py
new file mode 100644
index 00000000000..9795da62931
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/src/box_utils.py
@@ -0,0 +1,166 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+"""Bbox utils"""
+
+import math
+import itertools as it
+import numpy as np
+from .config import config
+
+
+class GeneratDefaultBoxes():
+ """
+ Generate Default boxes for retinanet, follows the order of (W, H, archor_sizes).
+ `self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [y, x, h, w].
+ `self.default_boxes_ltrb` has a shape as `self.default_boxes`, the last dimension is [y1, x1, y2, x2].
+ """
+
+ def __init__(self):
+ fk = config.img_shape[0] / np.array(config.steps)
+ scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])
+ anchor_size = np.array(config.anchor_size)
+ self.default_boxes = []
+ for idex, feature_size in enumerate(config.feature_size):
+ base_size = anchor_size[idex] / config.img_shape[0]
+ size1 = base_size * scales[0]
+ size2 = base_size * scales[1]
+ size3 = base_size * scales[2]
+ all_sizes = []
+ for aspect_ratio in config.aspect_ratios[idex]:
+ w1, h1 = size1 * math.sqrt(aspect_ratio), size1 / math.sqrt(aspect_ratio)
+ all_sizes.append((h1, w1))
+ w2, h2 = size2 * math.sqrt(aspect_ratio), size2 / math.sqrt(aspect_ratio)
+ all_sizes.append((h2, w2))
+ w3, h3 = size3 * math.sqrt(aspect_ratio), size3 / math.sqrt(aspect_ratio)
+ all_sizes.append((h3, w3))
+
+ assert len(all_sizes) == config.num_default[idex]
+
+ for i, j in it.product(range(feature_size), repeat=2):
+ for h, w in all_sizes:
+ cx, cy = (j + 0.5) / fk[idex], (i + 0.5) / fk[idex]
+ self.default_boxes.append([cy, cx, h, w])
+
+ def to_ltrb(cy, cx, h, w):
+ return cy - h / 2, cx - w / 2, cy + h / 2, cx + w / 2
+
+ # For IoU calculation
+ self.default_boxes_ltrb = np.array(tuple(to_ltrb(*i) for i in self.default_boxes), dtype='float32')
+ self.default_boxes = np.array(self.default_boxes, dtype='float32')
+
+
+default_boxes_ltrb = GeneratDefaultBoxes().default_boxes_ltrb
+default_boxes = GeneratDefaultBoxes().default_boxes
+y1, x1, y2, x2 = np.split(default_boxes_ltrb[:, :4], 4, axis=-1)
+vol_anchors = (x2 - x1) * (y2 - y1)
+matching_threshold = config.match_thershold
+
+
+def retinanet_bboxes_encode(boxes):
+ """
+ Labels anchors with ground truth inputs.
+
+ Args:
+ boxex: ground truth with shape [N, 5], for each row, it stores [y, x, h, w, cls].
+
+ Returns:
+ gt_loc: location ground truth with shape [num_anchors, 4].
+ gt_label: class ground truth with shape [num_anchors, 1].
+ num_matched_boxes: number of positives in an image.
+ """
+
+ def jaccard_with_anchors(bbox):
+ """Compute jaccard score a box and the anchors."""
+ # Intersection bbox and volume.
+ ymin = np.maximum(y1, bbox[0])
+ xmin = np.maximum(x1, bbox[1])
+ ymax = np.minimum(y2, bbox[2])
+ xmax = np.minimum(x2, bbox[3])
+ w = np.maximum(xmax - xmin, 0.)
+ h = np.maximum(ymax - ymin, 0.)
+
+ # Volumes.
+ inter_vol = h * w
+ union_vol = vol_anchors + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) - inter_vol
+ jaccard = inter_vol / union_vol
+ return np.squeeze(jaccard)
+
+ pre_scores = np.zeros((config.num_retinanet_boxes), dtype=np.float32)
+ t_boxes = np.zeros((config.num_retinanet_boxes, 4), dtype=np.float32)
+ t_label = np.zeros((config.num_retinanet_boxes), dtype=np.int64)
+ for bbox in boxes:
+ label = int(bbox[4])
+ scores = jaccard_with_anchors(bbox)
+ idx = np.argmax(scores)
+ scores[idx] = 2.0
+ mask = (scores > matching_threshold)
+ mask = mask & (scores > pre_scores)
+ pre_scores = np.maximum(pre_scores, scores * mask)
+ t_label = mask * label + (1 - mask) * t_label
+ for i in range(4):
+ t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i]
+
+ index = np.nonzero(t_label)
+
+ # Transform to ltrb.
+ bboxes = np.zeros((config.num_retinanet_boxes, 4), dtype=np.float32)
+ bboxes[:, [0, 1]] = (t_boxes[:, [0, 1]] + t_boxes[:, [2, 3]]) / 2
+ bboxes[:, [2, 3]] = t_boxes[:, [2, 3]] - t_boxes[:, [0, 1]]
+
+ # Encode features.
+ bboxes_t = bboxes[index]
+ default_boxes_t = default_boxes[index]
+ bboxes_t[:, :2] = (bboxes_t[:, :2] - default_boxes_t[:, :2]) / (default_boxes_t[:, 2:] * config.prior_scaling[0])
+ tmp = np.maximum(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4], 0.000001)
+ bboxes_t[:, 2:4] = np.log(tmp) / config.prior_scaling[1]
+ bboxes[index] = bboxes_t
+
+ num_match = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32)
+ return bboxes, t_label.astype(np.int32), num_match
+
+
+def retinanet_bboxes_decode(boxes):
+ """Decode predict boxes to [y, x, h, w]"""
+ boxes_t = boxes.copy()
+ default_boxes_t = default_boxes.copy()
+ boxes_t[:, :2] = boxes_t[:, :2] * config.prior_scaling[0] * default_boxes_t[:, 2:] + default_boxes_t[:, :2]
+ boxes_t[:, 2:4] = np.exp(boxes_t[:, 2:4] * config.prior_scaling[1]) * default_boxes_t[:, 2:4]
+
+ bboxes = np.zeros((len(boxes_t), 4), dtype=np.float32)
+
+ bboxes[:, [0, 1]] = boxes_t[:, [0, 1]] - boxes_t[:, [2, 3]] / 2
+ bboxes[:, [2, 3]] = boxes_t[:, [0, 1]] + boxes_t[:, [2, 3]] / 2
+
+ return np.clip(bboxes, 0, 1)
+
+
+def intersect(box_a, box_b):
+ """Compute the intersect of two sets of boxes."""
+ max_yx = np.minimum(box_a[:, 2:4], box_b[2:4])
+ min_yx = np.maximum(box_a[:, :2], box_b[:2])
+ inter = np.clip((max_yx - min_yx), a_min=0, a_max=np.inf)
+ return inter[:, 0] * inter[:, 1]
+
+
+def jaccard_numpy(box_a, box_b):
+ """Compute the jaccard overlap of two sets of boxes."""
+ inter = intersect(box_a, box_b)
+ area_a = ((box_a[:, 2] - box_a[:, 0]) *
+ (box_a[:, 3] - box_a[:, 1]))
+ area_b = ((box_b[2] - box_b[0]) *
+ (box_b[3] - box_b[1]))
+ union = area_a + area_b - inter
+ return inter / union
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/coco_eval.py b/model_zoo/research/cv/retinanet_resnet101/src/coco_eval.py
new file mode 100644
index 00000000000..d4e2666f7da
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/src/coco_eval.py
@@ -0,0 +1,196 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+"""Coco metrics utils"""
+
+import os
+import json
+import numpy as np
+from .config import config
+
+
+def apply_softnms(dets, scores, sigma=0.5, method=2, thresh=0.001, Nt=0.1):
+ '''
+ the soft nms implement using python
+ :param dets: the pred_bboxes
+ :param method: the policy of decay pred_bbox score in soft nms
+ :param thresh: the threshold
+ :param Nt: Nt
+ :return: the index of pred_bbox after soft nms
+ '''
+ x1 = dets[:, 0]
+ y1 = dets[:, 1]
+ x2 = dets[:, 2]
+ y2 = dets[:, 3]
+
+ areas = (y2 - y1 + 1.) * (x2 - x1 + 1.)
+ orders = scores.argsort()[::-1]
+ keep = []
+
+ while orders.size > 0:
+
+ i = orders[0]
+ keep.append(i)
+
+ for j in orders[1:]:
+
+ xx1 = np.maximum(x1[i], x1[j])
+ yy1 = np.maximum(y1[i], y1[j])
+ xx2 = np.minimum(x2[i], x2[j])
+ yy2 = np.minimum(y2[i], y2[j])
+ w = np.maximum(xx2 - xx1 + 1., 0.)
+ h = np.maximum(yy2 - yy1 + 1., 0.)
+
+ inter = w * h
+ overlap = inter / (areas[i] + areas[j] - inter)
+
+ if method == 1: # linear
+
+ if overlap > Nt:
+
+ weight = 1 - overlap
+
+ else:
+
+ weight = 1
+
+ elif method == 2: # gaussian
+
+ weight = np.exp(-(overlap * overlap) / sigma)
+
+ else: # original NMS
+
+ if overlap > Nt:
+
+ weight = 0
+
+ else:
+
+ weight = 1
+
+ scores[j] = weight * scores[j]
+
+ if scores[j] < thresh:
+ orders = np.delete(orders, np.where(orders == j))
+
+ orders = np.delete(orders, 0)
+
+ return keep
+
+
+def apply_nms(all_boxes, all_scores, thres, max_boxes):
+ """Apply NMS to bboxes."""
+ y1 = all_boxes[:, 0]
+ x1 = all_boxes[:, 1]
+ y2 = all_boxes[:, 2]
+ x2 = all_boxes[:, 3]
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+
+ order = all_scores.argsort()[::-1]
+ keep = []
+
+ while order.size > 0:
+ i = order[0]
+ keep.append(i)
+
+ if len(keep) >= max_boxes:
+ break
+
+ xx1 = np.maximum(x1[i], x1[order[1:]])
+ yy1 = np.maximum(y1[i], y1[order[1:]])
+ xx2 = np.minimum(x2[i], x2[order[1:]])
+ yy2 = np.minimum(y2[i], y2[order[1:]])
+
+ w = np.maximum(0.0, xx2 - xx1 + 1)
+ h = np.maximum(0.0, yy2 - yy1 + 1)
+ inter = w * h
+
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
+
+ inds = np.where(ovr <= thres)[0]
+
+ order = order[inds + 1]
+ return keep
+
+
+def metrics(pred_data):
+ """Calculate mAP of predicted bboxes."""
+ from pycocotools.coco import COCO
+ from pycocotools.cocoeval import COCOeval
+ num_classes = config.num_classes
+
+ coco_root = config.coco_root
+ data_type = config.val_data_type
+
+ # Classes need to train or test.
+ val_cls = config.coco_classes
+ val_cls_dict = {}
+ for i, cls in enumerate(val_cls):
+ val_cls_dict[i] = cls
+
+ anno_json = os.path.join(coco_root, config.instances_set.format(data_type))
+ coco_gt = COCO(anno_json)
+ classs_dict = {}
+ cat_ids = coco_gt.loadCats(coco_gt.getCatIds())
+ for cat in cat_ids:
+ classs_dict[cat["name"]] = cat["id"]
+
+ predictions = []
+ img_ids = []
+
+ for sample in pred_data:
+ pred_boxes = sample['boxes']
+ box_scores = sample['box_scores']
+ img_id = sample['img_id']
+ h, w = sample['image_shape']
+
+ final_boxes = []
+ final_label = []
+ final_score = []
+ img_ids.append(img_id)
+
+ for c in range(1, num_classes):
+ class_box_scores = box_scores[:, c]
+ score_mask = class_box_scores > config.min_score
+ class_box_scores = class_box_scores[score_mask]
+ class_boxes = pred_boxes[score_mask] * [h, w, h, w]
+
+ if score_mask.any():
+ # nms_index = apply_nms(class_boxes, class_box_scores, config.nms_thershold, config.max_boxes)
+ # apply_softnms( dets, scores,method=2, thresh=0.001, Nt=0.1, sigma=0.5 )
+ nms_index = apply_softnms(class_boxes, class_box_scores, config.softnms_sigma)
+ class_boxes = class_boxes[nms_index]
+ class_box_scores = class_box_scores[nms_index]
+
+ final_boxes += class_boxes.tolist()
+ final_score += class_box_scores.tolist()
+ final_label += [classs_dict[val_cls_dict[c]]] * len(class_box_scores)
+
+ for loc, label, score in zip(final_boxes, final_label, final_score):
+ res = {}
+ res['image_id'] = img_id
+ res['bbox'] = [loc[1], loc[0], loc[3] - loc[1], loc[2] - loc[0]]
+ res['score'] = score
+ res['category_id'] = label
+ predictions.append(res)
+ with open('predictions.json', 'w') as f:
+ json.dump(predictions, f)
+
+ coco_dt = coco_gt.loadRes('predictions.json')
+ E = COCOeval(coco_gt, coco_dt, iouType='bbox')
+ E.params.imgIds = img_ids
+ E.evaluate()
+ E.accumulate()
+ E.summarize()
+ return E.stats[0]
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/config.py b/model_zoo/research/cv/retinanet_resnet101/src/config.py
new file mode 100644
index 00000000000..b16b259434d
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/src/config.py
@@ -0,0 +1,87 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# " ============================================================================
+
+"""Config parameters for retinanet models."""
+
+from easydict import EasyDict as ed
+
+config = ed({
+ "img_shape": [600, 600],
+ "num_retinanet_boxes": 67995,
+ "match_thershold": 0.5,
+ "softnms_sigma": 0.5,
+ "nms_thershold": 0.6,
+ "min_score": 0.1,
+ "max_boxes": 100,
+
+ # learing rate settings
+ "global_step": 0,
+ "lr_init": 1e-6,
+ "lr_end_rate": 5e-3,
+ "warmup_epochs1": 2,
+ "warmup_epochs2": 5,
+ "warmup_epochs3": 23,
+ "warmup_epochs4": 60,
+ "warmup_epochs5": 160,
+ "momentum": 0.9,
+ "weight_decay": 1.5e-4,
+
+ # network
+ "num_default": [9, 9, 9, 9, 9],
+ "extras_out_channels": [256, 256, 256, 256, 256],
+ "feature_size": [75, 38, 19, 10, 5],
+ "aspect_ratios": [(0.5, 1.0, 2.0), (0.5, 1.0, 2.0), (0.5, 1.0, 2.0), (0.5, 1.0, 2.0), (0.5, 1.0, 2.0)],
+ "steps": (8, 16, 32, 64, 128),
+ "anchor_size": (32, 64, 128, 256, 512),
+ "prior_scaling": (0.1, 0.2),
+ "gamma": 2.0,
+ "alpha": 0.75,
+
+ # `mindrecord_dir` and `coco_root` are better to use absolute path.
+ "mindrecord_dir": "/opr/root/data/MindRecord_COCO",
+ "coco_root": "/opr/root/data/",
+ "train_data_type": "train2017",
+ "val_data_type": "val2017",
+ "instances_set": "anno/instances_{}.json",
+ "coco_classes": ('background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
+ 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
+ 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
+ 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
+ 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
+ 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
+ 'kite', 'baseball bat', 'baseball glove', 'skateboard',
+ 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
+ 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
+ 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
+ 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
+ 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
+ 'refrigerator', 'book', 'clock', 'vase', 'scissors',
+ 'teddy bear', 'hair drier', 'toothbrush'),
+ "num_classes": 81,
+ # The annotation.json position of voc validation dataset.
+ "voc_root": "",
+ # voc original dataset.
+ "voc_dir": "",
+ # if coco or voc used, `image_dir` and `anno_path` are useless.
+ "image_dir": "",
+ "anno_path": "",
+ "save_checkpoint": True,
+ "save_checkpoint_epochs": 5,
+ "keep_checkpoint_max": 30,
+ "save_checkpoint_path": "./model",
+ "finish_epoch": 0,
+ "checkpoint_path": "/opr/root/reretina/retinanet2/LOG0/model/retinanet-400_458.ckpt"
+})
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/dataset.py b/model_zoo/research/cv/retinanet_resnet101/src/dataset.py
new file mode 100644
index 00000000000..5596f2a4243
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/src/dataset.py
@@ -0,0 +1,454 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+"""retinanet dataset"""
+
+from __future__ import division
+
+import os
+import json
+import xml.etree.ElementTree as et
+import numpy as np
+import cv2
+
+import mindspore.dataset as de
+import mindspore.dataset.vision.c_transforms as C
+from mindspore.mindrecord import FileWriter
+from .config import config
+from .box_utils import jaccard_numpy, retinanet_bboxes_encode
+
+
+def _rand(a=0., b=1.):
+ """Generate random."""
+ return np.random.rand() * (b - a) + a
+
+
+def get_imageId_from_fileName(filename):
+ """Get imageID from fileName"""
+ filename = os.path.splitext(filename)[0]
+ if filename.isdigit():
+ return int(filename)
+ return id_iter
+
+
+def random_sample_crop(image, boxes):
+ """Random Crop the image and boxes"""
+ height, width, _ = image.shape
+ min_iou = np.random.choice([None, 0.1, 0.3, 0.5, 0.7, 0.9])
+
+ if min_iou is None:
+ return image, boxes
+
+ # max trails (50)
+ for _ in range(50):
+ image_t = image
+
+ w = _rand(0.3, 1.0) * width
+ h = _rand(0.3, 1.0) * height
+
+ # aspect ratio constraint b/t .5 & 2
+ if h / w < 0.5 or h / w > 2:
+ continue
+
+ left = _rand() * (width - w)
+ top = _rand() * (height - h)
+
+ rect = np.array([int(top), int(left), int(top + h), int(left + w)])
+ overlap = jaccard_numpy(boxes, rect)
+
+ # dropout some boxes
+ drop_mask = overlap > 0
+ if not drop_mask.any():
+ continue
+
+ if overlap[drop_mask].min() < min_iou and overlap[drop_mask].max() > (min_iou + 0.2):
+ continue
+
+ image_t = image_t[rect[0]:rect[2], rect[1]:rect[3], :]
+
+ centers = (boxes[:, :2] + boxes[:, 2:4]) / 2.0
+
+ m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1])
+ m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1])
+
+ # mask in that both m1 and m2 are true
+ mask = m1 * m2 * drop_mask
+
+ # have any valid boxes? try again if not
+ if not mask.any():
+ continue
+
+ # take only matching gt boxes
+ boxes_t = boxes[mask, :].copy()
+
+ boxes_t[:, :2] = np.maximum(boxes_t[:, :2], rect[:2])
+ boxes_t[:, :2] -= rect[:2]
+ boxes_t[:, 2:4] = np.minimum(boxes_t[:, 2:4], rect[2:4])
+ boxes_t[:, 2:4] -= rect[:2]
+
+ return image_t, boxes_t
+ return image, boxes
+
+
+def preprocess_fn(img_id, image, box, is_training):
+ """Preprocess function for dataset."""
+ cv2.setNumThreads(2)
+
+ def _infer_data(image, input_shape):
+ img_h, img_w, _ = image.shape
+ input_h, input_w = input_shape
+
+ image = cv2.resize(image, (input_w, input_h))
+
+ # When the channels of image is 1
+ if len(image.shape) == 2:
+ image = np.expand_dims(image, axis=-1)
+ image = np.concatenate([image, image, image], axis=-1)
+
+ return img_id, image, np.array((img_h, img_w), np.float32)
+
+ def _data_aug(image, box, is_training, image_size=(600, 600)):
+ """Data augmentation function."""
+ ih, iw, _ = image.shape
+ w, h = image_size
+
+ if not is_training:
+ return _infer_data(image, image_size)
+
+ # Random crop
+ box = box.astype(np.float32)
+ image, box = random_sample_crop(image, box)
+ ih, iw, _ = image.shape
+
+ # Resize image
+ image = cv2.resize(image, (w, h))
+
+ # Flip image or not
+ flip = _rand() < .5
+ if flip:
+ image = cv2.flip(image, 1, dst=None)
+
+ # When the channels of image is 1
+ if len(image.shape) == 2:
+ image = np.expand_dims(image, axis=-1)
+ image = np.concatenate([image, image, image], axis=-1)
+
+ box[:, [0, 2]] = box[:, [0, 2]] / ih
+ box[:, [1, 3]] = box[:, [1, 3]] / iw
+
+ if flip:
+ box[:, [1, 3]] = 1 - box[:, [3, 1]]
+
+ box, label, num_match = retinanet_bboxes_encode(box)
+ return image, box, label, num_match
+
+ return _data_aug(image, box, is_training, image_size=config.img_shape)
+
+
+def create_voc_label(is_training):
+ """Get image path and annotation from VOC."""
+ voc_dir = config.voc_dir
+ cls_map = {name: i for i, name in enumerate(config.coco_classes)}
+ sub_dir = 'train' if is_training else 'eval'
+ voc_dir = os.path.join(voc_dir, sub_dir)
+ if not os.path.isdir(voc_dir):
+ raise ValueError(f'Cannot find {sub_dir} dataset path.')
+
+ image_dir = anno_dir = voc_dir
+ if os.path.isdir(os.path.join(voc_dir, 'Images')):
+ image_dir = os.path.join(voc_dir, 'Images')
+ if os.path.isdir(os.path.join(voc_dir, 'Annotations')):
+ anno_dir = os.path.join(voc_dir, 'Annotations')
+
+ if not is_training:
+ data_dir = config.voc_root
+ json_file = os.path.join(data_dir, config.instances_set.format(sub_dir))
+ file_dir = os.path.split(json_file)[0]
+ if not os.path.isdir(file_dir):
+ os.makedirs(file_dir)
+ json_dict = {"images": [], "type": "instances", "annotations": [],
+ "categories": []}
+ bnd_id = 1
+
+ image_files_dict = {}
+ image_anno_dict = {}
+ images = []
+ for anno_file in os.listdir(anno_dir):
+ print(anno_file)
+ if not anno_file.endswith('xml'):
+ continue
+ tree = et.parse(os.path.join(anno_dir, anno_file))
+ root_node = tree.getroot()
+ file_name = root_node.find('filename').text
+ img_id = get_imageId_from_fileName(file_name)
+ image_path = os.path.join(image_dir, file_name)
+ print(image_path)
+ if not os.path.isfile(image_path):
+ print(f'Cannot find image {file_name} according to annotations.')
+ continue
+
+ labels = []
+ for obj in root_node.iter('object'):
+ cls_name = obj.find('name').text
+ if cls_name not in cls_map:
+ print(f'Label "{cls_name}" not in "{config.coco_classes}"')
+ continue
+ bnd_box = obj.find('bndbox')
+ x_min = int(bnd_box.find('xmin').text) - 1
+ y_min = int(bnd_box.find('ymin').text) - 1
+ x_max = int(bnd_box.find('xmax').text) - 1
+ y_max = int(bnd_box.find('ymax').text) - 1
+ labels.append([y_min, x_min, y_max, x_max, cls_map[cls_name]])
+
+ if not is_training:
+ o_width = abs(x_max - x_min)
+ o_height = abs(y_max - y_min)
+ ann = {'area': o_width * o_height, 'iscrowd': 0, 'image_id': \
+ img_id, 'bbox': [x_min, y_min, o_width, o_height], \
+ 'category_id': cls_map[cls_name], 'id': bnd_id, \
+ 'ignore': 0, \
+ 'segmentation': []}
+ json_dict['annotations'].append(ann)
+ bnd_id = bnd_id + 1
+
+ if labels:
+ images.append(img_id)
+ image_files_dict[img_id] = image_path
+ image_anno_dict[img_id] = np.array(labels)
+
+ if not is_training:
+ size = root_node.find("size")
+ width = int(size.find('width').text)
+ height = int(size.find('height').text)
+ image = {'file_name': file_name, 'height': height, 'width': width,
+ 'id': img_id}
+ json_dict['images'].append(image)
+
+ if not is_training:
+ for cls_name, cid in cls_map.items():
+ cat = {'supercategory': 'none', 'id': cid, 'name': cls_name}
+ json_dict['categories'].append(cat)
+ json_fp = open(json_file, 'w')
+ json_str = json.dumps(json_dict)
+ json_fp.write(json_str)
+ json_fp.close()
+
+ return images, image_files_dict, image_anno_dict
+
+
+def create_coco_label(is_training):
+ """Get image path and annotation from COCO."""
+ from pycocotools.coco import COCO
+
+ coco_root = config.coco_root
+ data_type = config.val_data_type
+ if is_training:
+ data_type = config.train_data_type
+
+ # Classes need to train or test.
+ train_cls = config.coco_classes
+ train_cls_dict = {}
+ for i, cls in enumerate(train_cls):
+ train_cls_dict[cls] = i
+
+ anno_json = os.path.join(coco_root, config.instances_set.format(data_type))
+
+ coco = COCO(anno_json)
+ classs_dict = {}
+ cat_ids = coco.loadCats(coco.getCatIds())
+ for cat in cat_ids:
+ classs_dict[cat["id"]] = cat["name"]
+
+ image_ids = coco.getImgIds()
+ images = []
+ image_path_dict = {}
+ image_anno_dict = {}
+
+ for img_id in image_ids:
+ image_info = coco.loadImgs(img_id)
+ file_name = image_info[0]["file_name"]
+ anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None)
+ anno = coco.loadAnns(anno_ids)
+ image_path = os.path.join(coco_root, data_type, file_name)
+ annos = []
+ iscrowd = False
+ for label in anno:
+ bbox = label["bbox"]
+ class_name = classs_dict[label["category_id"]]
+ iscrowd = iscrowd or label["iscrowd"]
+ if class_name in train_cls:
+ x_min, x_max = bbox[0], bbox[0] + bbox[2]
+ y_min, y_max = bbox[1], bbox[1] + bbox[3]
+ annos.append(list(map(round, [y_min, x_min, y_max, x_max])) + [train_cls_dict[class_name]])
+
+ if not is_training and iscrowd:
+ continue
+ if len(annos) >= 1:
+ images.append(img_id)
+ image_path_dict[img_id] = image_path
+ image_anno_dict[img_id] = np.array(annos)
+
+ return images, image_path_dict, image_anno_dict
+
+
+def anno_parser(annos_str):
+ """Parse annotation from string to list."""
+ annos = []
+ for anno_str in annos_str:
+ anno = list(map(int, anno_str.strip().split(',')))
+ annos.append(anno)
+ return annos
+
+
+def filter_valid_data(image_dir, anno_path):
+ """Filter valid image file, which both in image_dir and anno_path."""
+ images = []
+ image_path_dict = {}
+ image_anno_dict = {}
+ if not os.path.isdir(image_dir):
+ raise RuntimeError("Path given is not valid.")
+ if not os.path.isfile(anno_path):
+ raise RuntimeError("Annotation file is not valid.")
+
+ with open(anno_path, "rb") as f:
+ lines = f.readlines()
+ for img_id, line in enumerate(lines):
+ line_str = line.decode("utf-8").strip()
+ line_split = str(line_str).split(' ')
+ file_name = line_split[0]
+ image_path = os.path.join(image_dir, file_name)
+ if os.path.isfile(image_path):
+ images.append(img_id)
+ image_path_dict[img_id] = image_path
+ image_anno_dict[img_id] = anno_parser(line_split[1:])
+
+ return images, image_path_dict, image_anno_dict
+
+
+def voc_data_to_mindrecord(mindrecord_dir, is_training, prefix="retinanet.mindrecord", file_num=8):
+ """Create MindRecord file by image_dir and anno_path."""
+ mindrecord_path = os.path.join(mindrecord_dir, prefix)
+ writer = FileWriter(mindrecord_path, file_num)
+ images, image_path_dict, image_anno_dict = create_voc_label(is_training)
+
+ retinanet_json = {
+ "img_id": {"type": "int32", "shape": [1]},
+ "image": {"type": "bytes"},
+ "annotation": {"type": "int32", "shape": [-1, 5]},
+ }
+ writer.add_schema(retinanet_json, "retinanet_json")
+
+ for img_id in images:
+ image_path = image_path_dict[img_id]
+ with open(image_path, 'rb') as f:
+ img = f.read()
+ annos = np.array(image_anno_dict[img_id], dtype=np.int32)
+ img_id = np.array([img_id], dtype=np.int32)
+ row = {"img_id": img_id, "image": img, "annotation": annos}
+ writer.write_raw_data([row])
+ writer.commit()
+
+
+def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="retina2.mindrecord", file_num=4):
+ """Create MindRecord file."""
+ mindrecord_dir = config.mindrecord_dir
+ mindrecord_path = os.path.join(mindrecord_dir, prefix)
+ writer = FileWriter(mindrecord_path, file_num)
+ if dataset == "coco":
+ images, image_path_dict, image_anno_dict = create_coco_label(is_training)
+ else:
+ images, image_path_dict, image_anno_dict = filter_valid_data(config.image_dir, config.anno_path)
+
+ retinanet_json = {
+ "img_id": {"type": "int32", "shape": [1]},
+ "image": {"type": "bytes"},
+ "annotation": {"type": "int32", "shape": [-1, 5]},
+ }
+ writer.add_schema(retinanet_json, "retinanet_json")
+
+ for img_id in images:
+ image_path = image_path_dict[img_id]
+ with open(image_path, 'rb') as f:
+ img = f.read()
+ annos = np.array(image_anno_dict[img_id], dtype=np.int32)
+ img_id = np.array([img_id], dtype=np.int32)
+ row = {"img_id": img_id, "image": img, "annotation": annos}
+ writer.write_raw_data([row])
+ writer.commit()
+
+
+def create_retinanet_dataset(mindrecord_file, batch_size, repeat_num, device_num=1, rank=0,
+ is_training=True, num_parallel_workers=64):
+ """Creatr retinanet dataset with MindDataset."""
+ ds = de.MindDataset(mindrecord_file, columns_list=["img_id", "image", "annotation"], num_shards=device_num,
+ shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=is_training)
+ decode = C.Decode()
+ ds = ds.map(operations=decode, input_columns=["image"])
+ change_swap_op = C.HWC2CHW()
+ normalize_op = C.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
+ std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
+ color_adjust_op = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
+ compose_map_func = (lambda img_id, image, annotation: preprocess_fn(img_id, image, annotation, is_training))
+ if is_training:
+ output_columns = ["image", "box", "label", "num_match"]
+ trans = [color_adjust_op, normalize_op, change_swap_op]
+ else:
+ output_columns = ["img_id", "image", "image_shape"]
+ trans = [normalize_op, change_swap_op]
+ ds = ds.map(operations=compose_map_func, input_columns=["img_id", "image", "annotation"],
+ output_columns=output_columns, column_order=output_columns,
+ python_multiprocessing=is_training,
+ num_parallel_workers=num_parallel_workers)
+ ds = ds.map(operations=trans, input_columns=["image"], python_multiprocessing=is_training,
+ num_parallel_workers=num_parallel_workers)
+ ds = ds.batch(batch_size, drop_remainder=True)
+ ds = ds.repeat(repeat_num)
+ return ds
+
+
+def create_mindrecord(dataset="coco", prefix="retinanet.mindrecord", is_training=True):
+ """create_mindrecord"""
+ print("Start create dataset!")
+
+ # It will generate mindrecord file in config.mindrecord_dir,
+ # and the file name is retinanet.mindrecord0, 1, ... file_num.
+
+ mindrecord_dir = config.mindrecord_dir
+ mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
+ if not os.path.exists(mindrecord_file):
+ if not os.path.isdir(mindrecord_dir):
+ os.makedirs(mindrecord_dir)
+ if dataset == "coco":
+ if os.path.isdir(config.coco_root):
+ print("Create Mindrecord.")
+ data_to_mindrecord_byte_image("coco", is_training, prefix)
+ print("Create Mindrecord Done, at {}".format(mindrecord_dir))
+ else:
+ print("coco_root not exits.")
+ elif dataset == "voc":
+ if os.path.isdir(config.voc_dir):
+ print("Create Mindrecord.")
+ voc_data_to_mindrecord(mindrecord_dir, is_training, prefix)
+ print("Create Mindrecord Done, at {}".format(mindrecord_dir))
+ else:
+ print("voc_dir not exits.")
+ else:
+ if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
+ print("Create Mindrecord.")
+ data_to_mindrecord_byte_image("other", is_training, prefix)
+ print("Create Mindrecord Done, at {}".format(mindrecord_dir))
+ else:
+ print("image_dir or anno_path not exits.")
+ return mindrecord_file
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/init_params.py b/model_zoo/research/cv/retinanet_resnet101/src/init_params.py
new file mode 100644
index 00000000000..51185243816
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/src/init_params.py
@@ -0,0 +1,35 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+"""Parameters utils"""
+
+from mindspore.common.initializer import initializer, TruncatedNormal
+
+
+def init_net_param(network, initialize_mode='TruncatedNormal'):
+ """Init the parameters in net."""
+ params = network.trainable_params()
+ for p in params:
+ if 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
+ if initialize_mode == 'TruncatedNormal':
+ p.set_data(initializer(TruncatedNormal(), p.data.shape, p.data.dtype))
+ else:
+ p.set_data(initialize_mode, p.data.shape, p.data.dtype)
+
+
+def filter_checkpoint_parameter(param_dict):
+ """remove useless parameters"""
+ for key in list(param_dict.keys()):
+ if 'multi_loc_layers' in key or 'multi_cls_layers' in key:
+ del param_dict[key]
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/lr_schedule.py b/model_zoo/research/cv/retinanet_resnet101/src/lr_schedule.py
new file mode 100644
index 00000000000..0a2e6ce9e37
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/src/lr_schedule.py
@@ -0,0 +1,73 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+"""Learning rate schedule"""
+
+import math
+import numpy as np
+
+
+def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs1, warmup_epochs2, warmup_epochs3, warmup_epochs4,
+ warmup_epochs5, total_epochs, steps_per_epoch):
+ """
+ generate learning rate array
+
+ Args:
+ global_step(int): total steps of the training
+ lr_init(float): init learning rate
+ lr_end(float): end learning rate
+ lr_max(float): max learning rate
+ warmup_epochs(float): number of warmup epochs
+ total_epochs(int): total epoch of training
+ steps_per_epoch(int): steps of one epoch
+
+ Returns:
+ np.array, learning rate array
+ """
+ lr_each_step = []
+ total_steps = steps_per_epoch * total_epochs
+ warmup_steps1 = steps_per_epoch * warmup_epochs1
+ warmup_steps2 = warmup_steps1 + steps_per_epoch * warmup_epochs2
+ warmup_steps3 = warmup_steps2 + steps_per_epoch * warmup_epochs3
+ warmup_steps4 = warmup_steps3 + steps_per_epoch * warmup_epochs4
+ warmup_steps5 = warmup_steps4 + steps_per_epoch * warmup_epochs5
+ for i in range(total_steps):
+ if i < warmup_steps1:
+ lr = lr_init * (warmup_steps1 - i) / (warmup_steps1) + (lr_max * 1e-4) * i / (warmup_steps1 * 3)
+ elif warmup_steps1 <= i < warmup_steps2:
+ lr = 1e-5 * (warmup_steps2 - i) / (warmup_steps2 - warmup_steps1) + (lr_max * 1e-3) * (
+ i - warmup_steps1) / (warmup_steps2 - warmup_steps1)
+ elif warmup_steps2 <= i < warmup_steps3:
+ lr = 1e-4 * (warmup_steps3 - i) / (warmup_steps3 - warmup_steps2) + (lr_max * 1e-2) * (
+ i - warmup_steps2) / (warmup_steps3 - warmup_steps2)
+ elif warmup_steps3 <= i < warmup_steps4:
+ lr = 1e-3 * (warmup_steps4 - i) / (warmup_steps4 - warmup_steps3) + (lr_max * 1e-1) * (
+ i - warmup_steps3) / (warmup_steps4 - warmup_steps3)
+ elif warmup_steps4 <= i < warmup_steps5:
+ lr = 1e-2 * (warmup_steps5 - i) / (warmup_steps5 - warmup_steps4) + lr_max * (i - warmup_steps4) / (
+ warmup_steps5 - warmup_steps4)
+ else:
+ lr = lr_end + \
+ (lr_max - lr_end) * \
+ (1. + math.cos(math.pi * (i - warmup_steps5) / (total_steps - warmup_steps5))) / 2.
+ if lr < 0.0:
+ lr = 0.0
+ lr_each_step.append(lr)
+
+ current_step = global_step
+ lr_each_step = np.array(lr_each_step).astype(np.float32)
+ learning_rate = lr_each_step[current_step:]
+
+ return learning_rate
diff --git a/model_zoo/research/cv/retinanet_resnet101/src/retinahead.py b/model_zoo/research/cv/retinanet_resnet101/src/retinahead.py
new file mode 100644
index 00000000000..b62bc8a6ac1
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/src/retinahead.py
@@ -0,0 +1,286 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+"""retinanet based resnet."""
+
+import mindspore.common.dtype as mstype
+import mindspore as ms
+import mindspore.nn as nn
+from mindspore import context, Tensor
+from mindspore.context import ParallelMode
+from mindspore.parallel._auto_parallel_context import auto_parallel_context
+from mindspore.communication.management import get_group_size
+from mindspore.ops import operations as P
+from mindspore.ops import functional as F
+from mindspore.ops import composite as C
+
+from .bottleneck import FPN
+
+
+class FlattenConcat(nn.Cell):
+ """
+ Concatenate predictions into a single tensor.
+
+ Args:
+ config (dict): The default config of retinanet.
+
+ Returns:
+ Tensor, flatten predictions.
+ """
+
+ def __init__(self, config):
+ super(FlattenConcat, self).__init__()
+ self.num_retinanet_boxes = config.num_retinanet_boxes
+ self.concat = P.Concat(axis=1)
+ self.transpose = P.Transpose()
+
+ def construct(self, inputs):
+ output = ()
+ batch_size = F.shape(inputs[0])[0]
+ for x in inputs:
+ x = self.transpose(x, (0, 2, 3, 1))
+ output += (F.reshape(x, (batch_size, -1)),)
+ res = self.concat(output)
+ return F.reshape(res, (batch_size, self.num_retinanet_boxes, -1))
+
+
+def ClassificationModel(in_channel, num_anchors, kernel_size=3, stride=1, pad_mod='same', num_classes=81,
+ feature_size=256):
+ conv1 = nn.Conv2d(in_channel, feature_size, kernel_size=3, pad_mode='same')
+ conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, pad_mode='same')
+ conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, pad_mode='same')
+ conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, pad_mode='same')
+ conv5 = nn.Conv2d(feature_size, num_anchors * num_classes, kernel_size=3, pad_mode='same')
+ return nn.SequentialCell([conv1, nn.ReLU(), conv2, nn.ReLU(), conv3, nn.ReLU(), conv4, nn.ReLU(), conv5])
+
+
+def RegressionModel(in_channel, num_anchors, kernel_size=3, stride=1, pad_mod='same', feature_size=256):
+ conv1 = nn.Conv2d(in_channel, feature_size, kernel_size=3, pad_mode='same')
+ conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, pad_mode='same')
+ conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, pad_mode='same')
+ conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, pad_mode='same')
+ conv5 = nn.Conv2d(feature_size, num_anchors * 4, kernel_size=3, pad_mode='same')
+ return nn.SequentialCell([conv1, nn.ReLU(), conv2, nn.ReLU(), conv3, nn.ReLU(), conv4, nn.ReLU(), conv5])
+
+
+class MultiBox(nn.Cell):
+ """
+ Multibox conv layers. Each multibox layer contains class conf scores and localization predictions.
+
+ Args:
+ config (dict): The default config of retinanet.
+
+ Returns:
+ Tensor, localization predictions.
+ Tensor, class conf scores.
+ """
+
+ def __init__(self, config):
+ super(MultiBox, self).__init__()
+
+ out_channels = config.extras_out_channels
+ num_default = config.num_default
+ loc_layers = []
+ cls_layers = []
+ for k, out_channel in enumerate(out_channels):
+ loc_layers += [RegressionModel(in_channel=out_channel, num_anchors=num_default[k])]
+ cls_layers += [ClassificationModel(in_channel=out_channel, num_anchors=num_default[k])]
+
+ self.multi_loc_layers = nn.layer.CellList(loc_layers)
+ self.multi_cls_layers = nn.layer.CellList(cls_layers)
+ self.flatten_concat = FlattenConcat(config)
+
+ def construct(self, inputs):
+ loc_outputs = ()
+ cls_outputs = ()
+ for i in range(len(self.multi_loc_layers)):
+ loc_outputs += (self.multi_loc_layers[i](inputs[i]),)
+ cls_outputs += (self.multi_cls_layers[i](inputs[i]),)
+ return self.flatten_concat(loc_outputs), self.flatten_concat(cls_outputs)
+
+
+class SigmoidFocalClassificationLoss(nn.Cell):
+ """"
+ Sigmoid focal-loss for classification.
+
+ Args:
+ gamma (float): Hyper-parameter to balance the easy and hard examples. Default: 2.0
+ alpha (float): Hyper-parameter to balance the positive and negative example. Default: 0.25
+
+ Returns:
+ Tensor, the focal loss.
+ """
+
+ def __init__(self, gamma=2.0, alpha=0.25):
+ super(SigmoidFocalClassificationLoss, self).__init__()
+ self.sigmiod_cross_entropy = P.SigmoidCrossEntropyWithLogits()
+ self.sigmoid = P.Sigmoid()
+ self.pow = P.Pow()
+ self.onehot = P.OneHot()
+ self.on_value = Tensor(1.0, mstype.float32)
+ self.off_value = Tensor(0.0, mstype.float32)
+ self.gamma = gamma
+ self.alpha = alpha
+
+ def construct(self, logits, label):
+ label = self.onehot(label, F.shape(logits)[-1], self.on_value, self.off_value)
+ sigmiod_cross_entropy = self.sigmiod_cross_entropy(logits, label)
+ sigmoid = self.sigmoid(logits)
+ label = F.cast(label, mstype.float32)
+ p_t = label * sigmoid + (1 - label) * (1 - sigmoid)
+ modulating_factor = self.pow(1 - p_t, self.gamma)
+ alpha_weight_factor = label * self.alpha + (1 - label) * (1 - self.alpha)
+ focal_loss = modulating_factor * alpha_weight_factor * sigmiod_cross_entropy
+ return focal_loss
+
+
+class retinahead(nn.Cell):
+ """retinahead"""
+ def __init__(self, backbone, config, is_training=True):
+ super(retinahead, self).__init__()
+
+ self.fpn = FPN(backbone=backbone, config=config)
+ self.multi_box = MultiBox(config)
+ self.is_training = is_training
+ if not is_training:
+ self.activation = P.Sigmoid()
+
+ def construct(self, inputs):
+ features = self.fpn(inputs)
+ pred_loc, pred_label = self.multi_box(features)
+ return pred_loc, pred_label
+
+
+class retinanetWithLossCell(nn.Cell):
+ """"
+ Provide retinanet training loss through network.
+
+ Args:
+ network (Cell): The training network.
+ config (dict): retinanet config.
+
+ Returns:
+ Tensor, the loss of the network.
+ """
+
+ def __init__(self, network, config):
+ super(retinanetWithLossCell, self).__init__()
+ self.network = network
+ self.less = P.Less()
+ self.tile = P.Tile()
+ self.reduce_sum = P.ReduceSum()
+ self.reduce_mean = P.ReduceMean()
+ self.expand_dims = P.ExpandDims()
+ self.class_loss = SigmoidFocalClassificationLoss(config.gamma, config.alpha)
+ self.loc_loss = nn.SmoothL1Loss()
+
+ def construct(self, x, gt_loc, gt_label, num_matched_boxes):
+ """construct"""
+ pred_loc, pred_label = self.network(x)
+ mask = F.cast(self.less(0, gt_label), mstype.float32)
+ num_matched_boxes = self.reduce_sum(F.cast(num_matched_boxes, mstype.float32))
+
+ # Localization Loss
+ mask_loc = self.tile(self.expand_dims(mask, -1), (1, 1, 4))
+ smooth_l1 = self.loc_loss(pred_loc, gt_loc) * mask_loc
+ loss_loc = self.reduce_sum(self.reduce_mean(smooth_l1, -1), -1)
+
+ # Classification Loss
+ loss_cls = self.class_loss(pred_label, gt_label)
+ loss_cls = self.reduce_sum(loss_cls, (1, 2))
+
+ return self.reduce_sum((loss_cls + loss_loc) / num_matched_boxes)
+
+
+class TrainingWrapper(nn.Cell):
+ """
+ Encapsulation class of retinanet network training.
+
+ Append an optimizer to the training network after that the construct
+ function can be called to create the backward graph.
+
+ Args:
+ network (Cell): The training network. Note that loss function should have been added.
+ optimizer (Optimizer): Optimizer for updating the weights.
+ sens (Number): The adjust parameter. Default: 1.0.
+ """
+
+ def __init__(self, network, optimizer, sens=1.0):
+ super(TrainingWrapper, self).__init__(auto_prefix=False)
+ self.network = network
+ self.network.set_grad()
+ self.weights = ms.ParameterTuple(network.trainable_params())
+ self.optimizer = optimizer
+ self.grad = C.GradOperation(get_by_list=True, sens_param=True)
+ self.sens = sens
+ self.reducer_flag = False
+ self.grad_reducer = None
+ self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
+ if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]:
+ self.reducer_flag = True
+ if self.reducer_flag:
+ mean = context.get_auto_parallel_context("gradients_mean")
+ if auto_parallel_context().get_device_num_is_set():
+ degree = context.get_auto_parallel_context("device_num")
+ else:
+ degree = get_group_size()
+ self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree)
+
+ def construct(self, *args):
+ weights = self.weights
+ loss = self.network(*args)
+ sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
+ grads = self.grad(self.network, weights)(*args, sens)
+ if self.reducer_flag:
+ # apply grad reducer on grads
+ grads = self.grad_reducer(grads)
+ return F.depend(loss, self.optimizer(grads))
+
+
+class retinanetInferWithDecoder(nn.Cell):
+ """
+ retinanet Infer wrapper to decode the bbox locations.
+
+ Args:
+ network (Cell): the origin retinanet infer network without bbox decoder.
+ default_boxes (Tensor): the default_boxes from anchor generator
+ config (dict): retinanet config
+ Returns:
+ Tensor, the locations for bbox after decoder representing (y0,x0,y1,x1)
+ Tensor, the prediction labels.
+
+ """
+ def __init__(self, network, default_boxes, config):
+ super(retinanetInferWithDecoder, self).__init__()
+ self.network = network
+ self.default_boxes = default_boxes
+ self.prior_scaling_xy = config.prior_scaling[0]
+ self.prior_scaling_wh = config.prior_scaling[1]
+
+ def construct(self, x):
+ """construct"""
+ pred_loc, pred_label = self.network(x)
+
+ default_bbox_xy = self.default_boxes[..., :2]
+ default_bbox_wh = self.default_boxes[..., 2:]
+ pred_xy = pred_loc[..., :2] * self.prior_scaling_xy * default_bbox_wh + default_bbox_xy
+ pred_wh = P.Exp()(pred_loc[..., 2:] * self.prior_scaling_wh) * default_bbox_wh
+
+ pred_xy_0 = pred_xy - pred_wh / 2.0
+ pred_xy_1 = pred_xy + pred_wh / 2.0
+ pred_xy = P.Concat(-1)((pred_xy_0, pred_xy_1))
+ pred_xy = P.Maximum()(pred_xy, 0)
+ pred_xy = P.Minimum()(pred_xy, 1)
+ return pred_xy, pred_label
diff --git a/model_zoo/research/cv/retinanet_resnet101/train.py b/model_zoo/research/cv/retinanet_resnet101/train.py
new file mode 100644
index 00000000000..6146d0e55c5
--- /dev/null
+++ b/model_zoo/research/cv/retinanet_resnet101/train.py
@@ -0,0 +1,154 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+"""Train retinanet and get checkpoint files."""
+
+import os
+import argparse
+import ast
+import mindspore
+import mindspore.nn as nn
+from mindspore import context, Tensor
+from mindspore.communication.management import init, get_rank
+from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor, Callback
+from mindspore.train import Model
+from mindspore.context import ParallelMode
+from mindspore.train.serialization import load_checkpoint, load_param_into_net
+from mindspore.common import set_seed
+from src.retinahead import retinanetWithLossCell, TrainingWrapper, retinahead
+from src.backbone import resnet101
+from src.config import config
+from src.dataset import create_retinanet_dataset, create_mindrecord
+from src.lr_schedule import get_lr
+from src.init_params import init_net_param, filter_checkpoint_parameter
+
+
+set_seed(1)
+class Monitor(Callback):
+ """
+ Monitor loss and time.
+
+ Args:
+ lr_init (numpy array): train lr
+
+ Returns:
+ None
+
+ Examples:
+ >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
+ """
+
+ def __init__(self, lr_init=None):
+ super(Monitor, self).__init__()
+ self.lr_init = lr_init
+ self.lr_init_len = len(lr_init)
+ def step_end(self, run_context):
+ cb_params = run_context.original_args()
+ print("lr:[{:8.6f}]".format(self.lr_init[cb_params.cur_step_num-1]), flush=True)
+
+def main():
+ parser = argparse.ArgumentParser(description="retinanet training")
+ parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False,
+ help="If set it true, only create Mindrecord, default is False.")
+ parser.add_argument("--distribute", type=ast.literal_eval, default=False,
+ help="Run distribute, default is False.")
+ parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
+ parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
+ parser.add_argument("--lr", type=float, default=0.1, help="Learning rate, default is 0.1.")
+ parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
+ parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
+ parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.")
+ parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
+ parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
+ parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
+ parser.add_argument("--save_checkpoint_epochs", type=int, default=1, help="Save checkpoint epochs, default is 1.")
+ parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
+ parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
+ help="Filter weight parameters, default is False.")
+ parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
+ help="run platform, only support Ascend.")
+ args_opt = parser.parse_args()
+
+ if args_opt.run_platform == "Ascend":
+ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
+ if args_opt.distribute:
+ if os.getenv("DEVICE_ID", "not_set").isdigit():
+ context.set_context(device_id=int(os.getenv("DEVICE_ID")))
+ init()
+ device_num = args_opt.device_num
+ rank = get_rank()
+ context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
+ device_num=device_num)
+ else:
+ rank = 0
+ device_num = 1
+ context.set_context(device_id=args_opt.device_id)
+
+ else:
+ raise ValueError("Unsupported platform.")
+
+ mindrecord_file = create_mindrecord(args_opt.dataset, "retina2.mindrecord", True)
+
+ if not args_opt.only_create_dataset:
+ loss_scale = float(args_opt.loss_scale)
+
+ # When create MindDataset, using the fitst mindrecord file, such as retinanet.mindrecord0.
+ dataset = create_retinanet_dataset(mindrecord_file, repeat_num=1,
+ batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
+
+ dataset_size = dataset.get_dataset_size()
+ print("Create dataset done!")
+
+
+ backbone = resnet101(config.num_classes)
+ retinanet = retinahead(backbone, config)
+ net = retinanetWithLossCell(retinanet, config)
+ net.to_float(mindspore.float16)
+ init_net_param(net)
+
+ if args_opt.pre_trained:
+ if args_opt.pre_trained_epoch_size <= 0:
+ raise KeyError("pre_trained_epoch_size must be greater than 0.")
+ param_dict = load_checkpoint(args_opt.pre_trained)
+ if args_opt.filter_weight:
+ filter_checkpoint_parameter(param_dict)
+ load_param_into_net(net, param_dict)
+
+ lr = Tensor(get_lr(global_step=config.global_step,
+ lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
+ warmup_epochs1=config.warmup_epochs1, warmup_epochs2=config.warmup_epochs2,
+ warmup_epochs3=config.warmup_epochs3, warmup_epochs4=config.warmup_epochs4,
+ warmup_epochs5=config.warmup_epochs5, total_epochs=args_opt.epoch_size,
+ steps_per_epoch=dataset_size))
+ opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
+ config.momentum, config.weight_decay, loss_scale)
+ net = TrainingWrapper(net, opt, loss_scale)
+ model = Model(net)
+ print("Start train retinanet, the first epoch will be slower because of the graph compilation.")
+ cb = [TimeMonitor(), LossMonitor()]
+ cb += [Monitor(lr_init=lr.asnumpy())]
+ config_ck = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs,
+ keep_checkpoint_max=config.keep_checkpoint_max)
+ ckpt_cb = ModelCheckpoint(prefix="retinanet", directory=config.save_checkpoint_path, config=config_ck)
+ if args_opt.distribute:
+ if rank == 0:
+ cb += [ckpt_cb]
+ model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
+ else:
+ cb += [ckpt_cb]
+ model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
+
+if __name__ == '__main__':
+ main()