!13559 broadcast_to op supported on cpu

From: @wangyanling10
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-03-20 14:14:48 +08:00 committed by Gitee
commit 04e3dbaad0
9 changed files with 291 additions and 10 deletions

View File

@ -0,0 +1,121 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/broadcast_to_cpu_kernel.h"
namespace mindspore {
namespace kernel {
template <typename T>
void BroadcastToCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
size_t offset = output_shape_.size() - input_shape_.size();
for (size_t i = 0; i < offset; ++i) {
input_shape_.insert(input_shape_.begin(), 1);
}
for (size_t i = 0; i < input_shape_.size(); ++i) {
if (output_shape_[i] < input_shape_[i] || output_shape_[i] % input_shape_[i] != 0) {
MS_LOG(EXCEPTION) << "Cannot broadcast input tensor with shape " << input_shape_ << " to "
<< "output tensor with shape " << output_shape_
<< ". Output shape must be the integer times of input shape at the " << i << " dim!";
}
}
for (size_t j = 0; j < output_shape_.size(); j++) {
nums_ *= output_shape_[j];
}
tmp_ptr_ = reinterpret_cast<T *>(malloc(nums_ * sizeof(T)));
}
// BroadcastTo
template <typename T>
void BroadcastToCPUKernel<T>::BroadcastToImpl(size_t dim) {
if (dim == output_shape_.size() - 1) {
size_t input_nums = 1;
for (size_t j = 0; j < input_shape_.size() - 1; ++j) {
input_nums *= input_shape_[j];
}
size_t rate = output_shape_[dim] / input_shape_[dim];
for (size_t j = 0; j < input_nums; ++j) {
T *in_ptr = input_ptr_ + input_shape_[dim] * j;
for (size_t i = 0; i < rate; ++i) {
T *out_ptr = tmp_ptr_ + (j * rate + i) * input_shape_[dim];
memcpy_s(out_ptr, input_shape_[dim] * sizeof(T), in_ptr, input_shape_[dim] * sizeof(T));
}
}
size_t elems = input_shape_[dim] * rate * input_nums;
memcpy_s(output_ptr_, elems * sizeof(T), tmp_ptr_, elems * sizeof(T));
return;
}
BroadcastToImpl(dim + 1);
size_t rate = output_shape_[dim] / input_shape_[dim];
if (rate > 1) {
size_t elems_nums = 1;
for (size_t j = output_shape_.size() - 1; j > dim; --j) {
elems_nums *= output_shape_[j];
}
size_t input_nums = 1;
for (size_t j = 0; j < dim; ++j) {
input_nums *= input_shape_[j];
}
for (size_t j = 0; j < input_nums; ++j) {
T *in_ptr = output_ptr_ + elems_nums * j;
for (size_t i = 0; i < rate; ++i) {
T *out_ptr = tmp_ptr_ + (j * rate + i) * elems_nums;
memcpy_s(out_ptr, elems_nums * sizeof(T), in_ptr, elems_nums * sizeof(T));
}
}
size_t elems = elems_nums * rate * input_nums;
memcpy_s(output_ptr_, elems * sizeof(T), tmp_ptr_, elems * sizeof(T));
}
}
template <typename T>
bool BroadcastToCPUKernel<T>::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs) {
if (inputs.size() != 1 || outputs.size() != 1) {
MS_LOG(EXCEPTION) << "Wrong number of inputs or outputs!";
return false;
}
if ((inputs[0] == nullptr) || (inputs[0]->size == 0)) {
MS_LOG(EXCEPTION) << "Input data is NULL!";
return false;
}
if ((outputs[0] == nullptr) || (outputs[0]->size == 0)) {
MS_LOG(EXCEPTION) << "Output data is NULL!";
return false;
}
input_ptr_ = reinterpret_cast<T *>(inputs[0]->addr);
output_ptr_ = reinterpret_cast<T *>(outputs[0]->addr);
BroadcastToImpl(0);
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,65 @@
/**
* Copyright 2021Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_BROADCAST_TO_CPU_KERNEL_H
#define MINDSPORE_BROADCAST_TO_CPU_KERNEL_H
#include <vector>
#include <memory>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T>
class BroadcastToCPUKernel : public CPUKernel {
public:
BroadcastToCPUKernel() = default;
~BroadcastToCPUKernel() override {
if (tmp_ptr_ != nullptr) {
free(tmp_ptr_);
tmp_ptr_ = nullptr;
}
};
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs) override;
void InitKernel(const CNodePtr &kernel_node) override;
void BroadcastToImpl(size_t dim);
size_t Index(const size_t &index, const size_t &dim) { return dim == 1 ? 0 : index; }
private:
std::vector<size_t> input_shape_;
std::vector<size_t> output_shape_;
size_t nums_{1};
T *input_ptr_{nullptr};
T *output_ptr_{nullptr};
T *tmp_ptr_{nullptr};
};
MS_REG_CPU_KERNEL(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
BroadcastToCPUKernel<float>);
MS_REG_CPU_KERNEL(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
BroadcastToCPUKernel<int>);
MS_REG_CPU_KERNEL(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
BroadcastToCPUKernel<bool>);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_BROADCAST_TO_CPU_KERNEL_H

View File

@ -118,7 +118,7 @@ class SequentialCell(Cell):
TypeError: If the type of the `args` is not list or OrderedDict.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> conv = nn.Conv2d(3, 2, 3, pad_mode='valid', weight_init="ones")

View File

@ -555,7 +555,7 @@ class Conv2dTranspose(_Conv):
ValueError: If `pad_mode` is not equal to 'pad' and `padding` is not equal to (0, 0, 0, 0).
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad')
@ -740,7 +740,7 @@ class Conv1dTranspose(_Conv):
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad')

View File

@ -81,7 +81,7 @@ class Embedding(Cell):
ValueError: If `padding_idx` is an int which not in range [0, `vocab_size`].
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> net = nn.Embedding(20000, 768, True)

View File

@ -226,7 +226,7 @@ class SSIM(Cell):
ValueError: If `filter_size` is less than 0.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> net = nn.SSIM()
@ -417,7 +417,7 @@ class PSNR(Cell):
ValueError: If length of shape of `img1` or `img2` is not equal to 4.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> net = nn.PSNR()

View File

@ -78,7 +78,7 @@ class ReduceLogSumExp(Cell):
TypeError: If dtype of `x` is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
@ -926,7 +926,7 @@ class Moments(Cell):
TypeError: If dtype of `input_x` is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> net = nn.Moments(axis=3, keep_dims=True)

View File

@ -293,7 +293,7 @@ class FakeQuantWithMinMaxObserver(UniformQuantObserver):
TypeError: If `quant_delay` is not greater than or equal to 0.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> fake_quant = nn.FakeQuantWithMinMaxObserver()
@ -448,7 +448,7 @@ class Conv2dBnFoldQuantOneConv(Cell):
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> qconfig = compression.quant.create_quant_config()

View File

@ -0,0 +1,95 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast():
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
shape = (4, 5, 2, 3, 4, 5, 6)
x_np = np.random.rand(2, 3, 1, 5, 1).astype(np.float32)
output = P.BroadcastTo(shape)(Tensor(x_np))
expect = np.broadcast_to(x_np, shape)
assert np.allclose(output.asnumpy(), expect)
shape = (3, 4, 5, 6)
x_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
output = P.BroadcastTo(shape)(Tensor(x_np))
expect = np.broadcast_to(x_np, shape)
assert np.allclose(output.asnumpy(), expect)
x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16)
output = P.BroadcastTo(shape)(Tensor(x1_np))
expect = np.broadcast_to(x1_np, shape)
assert np.allclose(output.asnumpy(), expect)
shape = (2, 3, 4, 5)
x1_np = np.random.rand(4, 5).astype(np.float32)
output = P.BroadcastTo(shape)(Tensor(x1_np))
expect = np.broadcast_to(x1_np, shape)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_dyn_init():
"""
Test running the op with -1's in the init shape to support varied inputs.
"""
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
ms_shape = (-1, 4, 5, 6)
np_shape = (3, 4, 5, 6)
x_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
output = P.BroadcastTo(ms_shape)(Tensor(x_np))
expect = np.broadcast_to(x_np, np_shape)
assert np.allclose(output.asnumpy(), expect)
x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16)
output = P.BroadcastTo(ms_shape)(Tensor(x1_np))
expect = np.broadcast_to(x1_np, np_shape)
assert np.allclose(output.asnumpy(), expect)
ms_shape = (2, 3, -1, 5)
np_shape = (2, 3, 4, 5)
x1_np = np.random.rand(4, 5).astype(np.float32)
output = P.BroadcastTo(ms_shape)(Tensor(x1_np))
expect = np.broadcast_to(x1_np, np_shape)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_dyn_invalid_init():
"""
Test running the op with -1's in the init shape in incorrect positions.
Expected to fail.
"""
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
ms_shape = (2, -1, 4, 5)
x_np = np.random.rand(4, 5).astype(np.float32)
with pytest.raises(ValueError):
P.BroadcastTo(ms_shape)(Tensor(x_np))