forked from mindspore-Ecosystem/mindspore
!9866 Move squeezenet scripts on GPU to model_zoo/research
From: @penny369 Reviewed-by: @guoqi1024,@oacjiewen Signed-off-by: @guoqi1024
This commit is contained in:
commit
0420feb965
|
@ -6,24 +6,23 @@
|
|||
- [Features](#features)
|
||||
- [Mixed Precision](#mixed-precision)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Quick Start](#quick-start)
|
||||
- [Quick Start](#quick-start)
|
||||
- [Script Description](#script-description)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Script Parameters](#script-parameters)
|
||||
- [Training Process](#training-process)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Performance](#performance)
|
||||
- [Evaluation Performance](#evaluation-performance)
|
||||
- [Inference Performance](#inference-performance)
|
||||
- [How to use](#how-to-use)
|
||||
- [Inference](#inference)
|
||||
- [Inference](#inference)
|
||||
- [Continue Training on the Pretrained Model](#continue-training-on-the-pretrained-model)
|
||||
- [Transfer Learning](#transfer-learning)
|
||||
- [Description of Random Situation](#description-of-random-situation)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
|
||||
# [SqueezeNet Description](#contents)
|
||||
|
||||
SqueezeNet is a lightweight and efficient CNN model proposed by Han et al., published in ICLR-2017. SqueezeNet has 50x fewer parameters than AlexNet, but the model performance (accuracy) is close to AlexNet.
|
||||
|
@ -32,57 +31,52 @@ These are examples of training SqueezeNet/SqueezeNet_Residual with CIFAR-10/Imag
|
|||
|
||||
[Paper](https://arxiv.org/abs/1602.07360): Forrest N. Iandola and Song Han and Matthew W. Moskewicz and Khalid Ashraf and William J. Dally and Kurt Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
|
||||
|
||||
|
||||
# [Model Architecture](#contents)
|
||||
|
||||
SqueezeNet is composed of fire modules. A fire module mainly includes two layers of convolution operations: one is the squeeze layer using a **1x1 convolution** kernel; the other is an expand layer using a mixture of **1x1** and **3x3 convolution** kernels.
|
||||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
||||
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
||||
|
||||
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
|
||||
- Train:146M,50,000 images
|
||||
- Test:29M,10,000 images
|
||||
- Train:146M,50,000 images
|
||||
- Test:29M,10,000 images
|
||||
- Data format:binary files
|
||||
- Note:Data will be processed in src/dataset.py
|
||||
- Note:Data will be processed in src/dataset.py
|
||||
|
||||
Dataset used: [ImageNet2012](http://www.image-net.org/)
|
||||
|
||||
- Dataset size: 125G, 1250k colorful images in 1000 classes
|
||||
- Train: 120G, 1200k images
|
||||
- Test: 5G, 50k images
|
||||
- Train: 120G, 1200k images
|
||||
- Test: 5G, 50k images
|
||||
- Data format: RGB images.
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
|
||||
# [Features](#contents)
|
||||
|
||||
## Mixed Precision
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Hardware(Ascend)
|
||||
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. Squeezenet training on GPU performs badly now, and it is still in research. See [squeezenet in research](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/squeezenet) to get up-to-date details.
|
||||
- Framework
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
||||
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
|
||||
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
||||
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
# [Quick Start](#contents)
|
||||
|
||||
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
||||
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
||||
|
||||
- runing on Ascend
|
||||
|
||||
```
|
||||
```bash
|
||||
# distributed training
|
||||
Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
|
@ -93,36 +87,18 @@ After installing MindSpore via the official website, you can start training and
|
|||
Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
- running on GPU
|
||||
|
||||
```
|
||||
# distributed training example
|
||||
sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# standalone training example
|
||||
sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# run evaluation example
|
||||
sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
|
||||
|
||||
# [Script Description](#contents)
|
||||
|
||||
## [Script and Sample Code](#contents)
|
||||
|
||||
```
|
||||
```shell
|
||||
.
|
||||
└── squeezenet
|
||||
├── README.md
|
||||
├── scripts
|
||||
├── run_distribute_train.sh # launch ascend distributed training(8 pcs)
|
||||
├── run_standalone_train.sh # launch ascend standalone training(1 pcs)
|
||||
├── run_distribute_train_gpu.sh # launch gpu distributed training(8 pcs)
|
||||
├── run_standalone_train_gpu.sh # launch gpu standalone training(1 pcs)
|
||||
├── run_eval.sh # launch ascend evaluation
|
||||
└── run_eval_gpu.sh # launch gpu evaluation
|
||||
├── src
|
||||
├── config.py # parameter configuration
|
||||
├── dataset.py # data preprocessing
|
||||
|
@ -145,8 +121,8 @@ Parameters for both training and evaluation can be set in config.py
|
|||
"batch_size": 32, # batch size of input tensor
|
||||
"loss_scale": 1024, # loss scale
|
||||
"momentum": 0.9, # momentum
|
||||
"weight_decay": 1e-4, # weight decay
|
||||
"epoch_size": 120, # only valid for taining, which is always 1 for inference
|
||||
"weight_decay": 1e-4, # weight decay
|
||||
"epoch_size": 120, # only valid for taining, which is always 1 for inference
|
||||
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
||||
"save_checkpoint": True, # whether save checkpoint or not
|
||||
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
||||
|
@ -166,8 +142,8 @@ Parameters for both training and evaluation can be set in config.py
|
|||
"batch_size": 32, # batch size of input tensor
|
||||
"loss_scale": 1024, # loss scale
|
||||
"momentum": 0.9, # momentum
|
||||
"weight_decay": 7e-5, # weight decay
|
||||
"epoch_size": 200, # only valid for taining, which is always 1 for inference
|
||||
"weight_decay": 7e-5, # weight decay
|
||||
"epoch_size": 200, # only valid for taining, which is always 1 for inference
|
||||
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
||||
"save_checkpoint": True, # whether save checkpoint or not
|
||||
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
||||
|
@ -189,8 +165,8 @@ Parameters for both training and evaluation can be set in config.py
|
|||
"batch_size": 32, # batch size of input tensor
|
||||
"loss_scale": 1024, # loss scale
|
||||
"momentum": 0.9, # momentum
|
||||
"weight_decay": 1e-4, # weight decay
|
||||
"epoch_size": 150, # only valid for taining, which is always 1 for inference
|
||||
"weight_decay": 1e-4, # weight decay
|
||||
"epoch_size": 150, # only valid for taining, which is always 1 for inference
|
||||
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
||||
"save_checkpoint": True, # whether save checkpoint or not
|
||||
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
||||
|
@ -210,8 +186,8 @@ Parameters for both training and evaluation can be set in config.py
|
|||
"batch_size": 32, # batch size of input tensor
|
||||
"loss_scale": 1024, # loss scale
|
||||
"momentum": 0.9, # momentum
|
||||
"weight_decay": 7e-5, # weight decay
|
||||
"epoch_size": 300, # only valid for taining, which is always 1 for inference
|
||||
"weight_decay": 7e-5, # weight decay
|
||||
"epoch_size": 300, # only valid for taining, which is always 1 for inference
|
||||
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
||||
"save_checkpoint": True, # whether save checkpoint or not
|
||||
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
||||
|
@ -231,9 +207,10 @@ For more configuration details, please refer the script `config.py`.
|
|||
## [Training Process](#contents)
|
||||
|
||||
### Usage
|
||||
|
||||
#### Running on Ascend
|
||||
|
||||
```
|
||||
```shell
|
||||
# distributed training
|
||||
Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
|
@ -247,21 +224,11 @@ Please follow the instructions in the link [hccl_tools](https://gitee.com/mindsp
|
|||
|
||||
Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
|
||||
|
||||
#### Running on GPU
|
||||
|
||||
```
|
||||
# distributed training example
|
||||
sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# standalone training example
|
||||
sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
```
|
||||
|
||||
### Result
|
||||
|
||||
- Training SqueezeNet with CIFAR-10 dataset
|
||||
|
||||
```
|
||||
```shell
|
||||
# standalone training result
|
||||
epoch: 1 step 1562, loss is 1.7103254795074463
|
||||
epoch: 2 step 1562, loss is 2.06101131439209
|
||||
|
@ -273,7 +240,7 @@ epoch: 5 step 1562, loss is 1.2140142917633057
|
|||
|
||||
- Training SqueezeNet with ImageNet dataset
|
||||
|
||||
```
|
||||
```shell
|
||||
# distribute training result(8 pcs)
|
||||
epoch: 1 step 5004, loss is 5.716324329376221
|
||||
epoch: 2 step 5004, loss is 5.350603103637695
|
||||
|
@ -285,7 +252,7 @@ epoch: 5 step 5004, loss is 4.136358261108398
|
|||
|
||||
- Training SqueezeNet_Residual with CIFAR-10 dataset
|
||||
|
||||
```
|
||||
```shell
|
||||
# standalone training result
|
||||
epoch: 1 step 1562, loss is 2.298271656036377
|
||||
epoch: 2 step 1562, loss is 2.2728664875030518
|
||||
|
@ -294,9 +261,10 @@ epoch: 4 step 1562, loss is 1.7553865909576416
|
|||
epoch: 5 step 1562, loss is 1.3370063304901123
|
||||
...
|
||||
```
|
||||
|
||||
- Training SqueezeNet_Residual with ImageNet dataset
|
||||
|
||||
```
|
||||
```shell
|
||||
# distribute training result(8 pcs)
|
||||
epoch: 1 step 5004, loss is 6.802495002746582
|
||||
epoch: 2 step 5004, loss is 6.386072158813477
|
||||
|
@ -311,59 +279,55 @@ epoch: 5 step 5004, loss is 4.888848304748535
|
|||
### Usage
|
||||
|
||||
#### Running on Ascend
|
||||
```
|
||||
|
||||
```shell
|
||||
# evaluation
|
||||
Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
```
|
||||
```shell
|
||||
# evaluation example
|
||||
sh scripts/run_eval.sh squeezenet cifar10 0 ~/cifar-10-verify-bin train/squeezenet_cifar10-120_1562.ckpt
|
||||
```
|
||||
|
||||
checkpoint can be produced in training process.
|
||||
|
||||
#### Running on GPU
|
||||
```
|
||||
sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
### Result
|
||||
|
||||
Evaluation result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the followings in log.
|
||||
|
||||
- Evaluating SqueezeNet with CIFAR-10 dataset
|
||||
|
||||
```
|
||||
```shell
|
||||
result: {'top_1_accuracy': 0.8896233974358975, 'top_5_accuracy': 0.9965945512820513}
|
||||
```
|
||||
|
||||
- Evaluating SqueezeNet with ImageNet dataset
|
||||
|
||||
```
|
||||
```shell
|
||||
result: {'top_1_accuracy': 0.5851472471190781, 'top_5_accuracy': 0.8105393725992317}
|
||||
```
|
||||
|
||||
- Evaluating SqueezeNet_Residual with CIFAR-10 dataset
|
||||
|
||||
```
|
||||
```shell
|
||||
result: {'top_1_accuracy': 0.9077524038461539, 'top_5_accuracy': 0.9969951923076923}
|
||||
```
|
||||
|
||||
- Evaluating SqueezeNet_Residual with ImageNet dataset
|
||||
|
||||
```
|
||||
```shell
|
||||
result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.826324423815621}
|
||||
```
|
||||
|
||||
|
||||
|
||||
# [Model Description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
||||
### Evaluation Performance
|
||||
### Evaluation Performance
|
||||
|
||||
#### SqueezeNet on CIFAR-10
|
||||
|
||||
| Parameters | Ascend |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | SqueezeNet |
|
||||
|
@ -383,6 +347,7 @@ result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.8263244238156
|
|||
| Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) |
|
||||
|
||||
#### SqueezeNet on ImageNet
|
||||
|
||||
| Parameters | Ascend |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | SqueezeNet |
|
||||
|
@ -402,6 +367,7 @@ result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.8263244238156
|
|||
| Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) |
|
||||
|
||||
#### SqueezeNet_Residual on CIFAR-10
|
||||
|
||||
| Parameters | Ascend |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | SqueezeNet_Residual |
|
||||
|
@ -421,6 +387,7 @@ result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.8263244238156
|
|||
| Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) |
|
||||
|
||||
#### SqueezeNet_Residual on ImageNet
|
||||
|
||||
| Parameters | Ascend |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | SqueezeNet_Residual |
|
||||
|
@ -439,11 +406,10 @@ result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.8263244238156
|
|||
| Checkpoint for Fine tuning | 15.3M (.ckpt file) |
|
||||
| Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) |
|
||||
|
||||
|
||||
|
||||
### Inference Performance
|
||||
|
||||
#### SqueezeNet on CIFAR-10
|
||||
|
||||
| Parameters | Ascend |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | SqueezeNet |
|
||||
|
@ -456,6 +422,7 @@ result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.8263244238156
|
|||
| Accuracy | 1pc: 89.0%; 8pcs: 84.4% |
|
||||
|
||||
#### SqueezeNet on ImageNet
|
||||
|
||||
| Parameters | Ascend |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | SqueezeNet |
|
||||
|
@ -468,6 +435,7 @@ result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.8263244238156
|
|||
| Accuracy | 8pcs: 58.5%(TOP1), 81.1%(TOP5) |
|
||||
|
||||
#### SqueezeNet_Residual on CIFAR-10
|
||||
|
||||
| Parameters | Ascend |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | SqueezeNet_Residual |
|
||||
|
@ -480,6 +448,7 @@ result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.8263244238156
|
|||
| Accuracy | 1pc: 90.8%; 8pcs: 87.4% |
|
||||
|
||||
#### SqueezeNet_Residual on ImageNet
|
||||
|
||||
| Parameters | Ascend |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | SqueezeNet_Residual |
|
||||
|
@ -492,19 +461,20 @@ result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.8263244238156
|
|||
| Accuracy | 8pcs: 60.9%(TOP1), 82.6%(TOP5) |
|
||||
|
||||
## [How to use](#contents)
|
||||
|
||||
### Inference
|
||||
|
||||
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
|
||||
|
||||
- Running on Ascend
|
||||
|
||||
```
|
||||
```py
|
||||
# Set context
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target='Ascend',
|
||||
device_id=device_id)
|
||||
|
||||
|
||||
# Load unseen dataset for inference
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=False,
|
||||
|
@ -522,49 +492,17 @@ If you need to use the trained model to perform inference on multiple hardware p
|
|||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
|
||||
|
||||
# Make predictions on the unseen dataset
|
||||
acc = model.eval(dataset)
|
||||
print("accuracy: ", acc)
|
||||
```
|
||||
|
||||
- Running on GPU:
|
||||
|
||||
```
|
||||
# Set context
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target='GPU',
|
||||
device_id=device_id)
|
||||
|
||||
# Load unseen dataset for inference
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=False,
|
||||
batch_size=config.batch_size,
|
||||
target='GPU')
|
||||
|
||||
# Define model
|
||||
net = squeezenet(num_classes=config.class_num)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
model = Model(net,
|
||||
loss_fn=loss,
|
||||
metrics={'top_1_accuracy', 'top_5_accuracy'})
|
||||
|
||||
# Load pre-trained model
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
|
||||
# Make predictions on the unseen dataset
|
||||
acc = model.eval(dataset)
|
||||
print("accuracy: ", acc)
|
||||
```
|
||||
|
||||
### Continue Training on the Pretrained Model
|
||||
### Continue Training on the Pretrained Model
|
||||
|
||||
- running on Ascend
|
||||
|
||||
```
|
||||
```py
|
||||
# Load dataset
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=True,
|
||||
|
@ -572,7 +510,7 @@ If you need to use the trained model to perform inference on multiple hardware p
|
|||
batch_size=config.batch_size,
|
||||
target='Ascend')
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
|
||||
# define net
|
||||
net = squeezenet(num_classes=config.class_num)
|
||||
|
||||
|
@ -592,7 +530,7 @@ If you need to use the trained model to perform inference on multiple hardware p
|
|||
lr_decay_mode=config.lr_decay_mode)
|
||||
lr = Tensor(lr)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale,
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale,
|
||||
drop_overflow_update=False)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
||||
lr,
|
||||
|
@ -608,7 +546,7 @@ If you need to use the trained model to perform inference on multiple hardware p
|
|||
amp_level="O2",
|
||||
keep_batchnorm_fp32=False)
|
||||
|
||||
# Set callbacks
|
||||
# Set callbacks
|
||||
config_ck = CheckpointConfig(
|
||||
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
||||
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||
|
@ -617,60 +555,7 @@ If you need to use the trained model to perform inference on multiple hardware p
|
|||
directory=ckpt_save_dir,
|
||||
config=config_ck)
|
||||
loss_cb = LossMonitor()
|
||||
|
||||
# Start training
|
||||
model.train(config.epoch_size - config.pretrain_epoch_size, dataset,
|
||||
callbacks=[time_cb, ckpt_cb, loss_cb])
|
||||
print("train success")
|
||||
```
|
||||
|
||||
- running on GPU
|
||||
|
||||
```
|
||||
# Load dataset
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=True,
|
||||
repeat_num=1,
|
||||
batch_size=config.batch_size,
|
||||
target='Ascend')
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
# define net
|
||||
net = squeezenet(num_classes=config.class_num)
|
||||
|
||||
# load checkpoint
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
# init lr
|
||||
lr = get_lr(lr_init=config.lr_init,
|
||||
lr_end=config.lr_end,
|
||||
lr_max=config.lr_max,
|
||||
total_epochs=config.epoch_size,
|
||||
warmup_epochs=config.warmup_epochs,
|
||||
pretrain_epochs=config.pretrain_epoch_size,
|
||||
steps_per_epoch=step_size,
|
||||
lr_decay_mode=config.lr_decay_mode)
|
||||
lr = Tensor(lr)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
||||
lr,
|
||||
config.momentum,
|
||||
config.weight_decay,
|
||||
use_nesterov=True)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
||||
|
||||
# Set callbacks
|
||||
config_ck = CheckpointConfig(
|
||||
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
||||
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||
time_cb = TimeMonitor(data_size=step_size)
|
||||
ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset,
|
||||
directory=ckpt_save_dir,
|
||||
config=config_ck)
|
||||
loss_cb = LossMonitor()
|
||||
|
||||
# Start training
|
||||
model.train(config.epoch_size - config.pretrain_epoch_size, dataset,
|
||||
callbacks=[time_cb, ckpt_cb, loss_cb])
|
||||
|
@ -678,13 +563,13 @@ If you need to use the trained model to perform inference on multiple hardware p
|
|||
```
|
||||
|
||||
### Transfer Learning
|
||||
To be added.
|
||||
|
||||
To be added.
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
|
||||
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
|
@ -19,6 +19,9 @@ from mindspore.ops import operations as P
|
|||
|
||||
|
||||
class Fire(nn.Cell):
|
||||
"""
|
||||
Fire network definition.
|
||||
"""
|
||||
def __init__(self, inplanes, squeeze_planes, expand1x1_planes,
|
||||
expand3x3_planes):
|
||||
super(Fire, self).__init__()
|
||||
|
@ -194,6 +197,9 @@ class SqueezeNet_Residual(nn.Cell):
|
|||
cell.bias.dtype))
|
||||
|
||||
def construct(self, x):
|
||||
"""
|
||||
Construct squeezenet_residual.
|
||||
"""
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
|
|
|
@ -78,6 +78,8 @@ if __name__ == '__main__':
|
|||
init()
|
||||
# GPU target
|
||||
else:
|
||||
print("Squeezenet training on GPU performs badly now, and it is still in research..."
|
||||
"See model_zoo/research/cv/squeezenet to get up-to-date details.")
|
||||
init()
|
||||
context.set_auto_parallel_context(
|
||||
device_num=get_group_size(),
|
||||
|
@ -143,6 +145,8 @@ if __name__ == '__main__':
|
|||
keep_batchnorm_fp32=False)
|
||||
else:
|
||||
# GPU target
|
||||
print("Squeezenet training on GPU performs badly now, and it is still in research..."
|
||||
"See model_zoo/research/cv/squeezenet to get up-to-date details.")
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
||||
lr,
|
||||
config.momentum,
|
||||
|
|
|
@ -0,0 +1,691 @@
|
|||
# Contents
|
||||
|
||||
- [SqueezeNet Description](#squeezenet-description)
|
||||
- [Model Architecture](#model-architecture)
|
||||
- [Dataset](#dataset)
|
||||
- [Features](#features)
|
||||
- [Mixed Precision](#mixed-precision)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Quick Start](#quick-start)
|
||||
- [Script Description](#script-description)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Script Parameters](#script-parameters)
|
||||
- [Training Process](#training-process)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Evaluation Performance](#evaluation-performance)
|
||||
- [Inference Performance](#inference-performance)
|
||||
- [How to use](#how-to-use)
|
||||
- [Inference](#inference)
|
||||
- [Continue Training on the Pretrained Model](#continue-training-on-the-pretrained-model)
|
||||
- [Transfer Learning](#transfer-learning)
|
||||
- [Description of Random Situation](#description-of-random-situation)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
# [SqueezeNet Description](#contents)
|
||||
|
||||
SqueezeNet is a lightweight and efficient CNN model proposed by Han et al., published in ICLR-2017. SqueezeNet has 50x fewer parameters than AlexNet, but the model performance (accuracy) is close to AlexNet.
|
||||
|
||||
These are examples of training SqueezeNet/SqueezeNet_Residual with CIFAR-10/ImageNet dataset in MindSpore. SqueezeNet_Residual adds residual operation on the basis of SqueezeNet, which can improve the accuracy of the model without increasing the amount of parameters.
|
||||
|
||||
[Paper](https://arxiv.org/abs/1602.07360): Forrest N. Iandola and Song Han and Matthew W. Moskewicz and Khalid Ashraf and William J. Dally and Kurt Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
|
||||
|
||||
# [Model Architecture](#contents)
|
||||
|
||||
SqueezeNet is composed of fire modules. A fire module mainly includes two layers of convolution operations: one is the squeeze layer using a **1x1 convolution** kernel; the other is an expand layer using a mixture of **1x1** and **3x3 convolution** kernels.
|
||||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
||||
|
||||
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
|
||||
- Train:146M,50,000 images
|
||||
- Test:29M,10,000 images
|
||||
- Data format:binary files
|
||||
- Note:Data will be processed in src/dataset.py
|
||||
|
||||
Dataset used: [ImageNet2012](http://www.image-net.org/)
|
||||
|
||||
- Dataset size: 125G, 1250k colorful images in 1000 classes
|
||||
- Train: 120G, 1200k images
|
||||
- Test: 5G, 50k images
|
||||
- Data format: RGB images.
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
|
||||
# [Features](#contents)
|
||||
|
||||
## Mixed Precision
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. Squeezenet training on GPU performs badly now, and it is still in research.
|
||||
- Framework
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
||||
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
# [Quick Start](#contents)
|
||||
|
||||
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
||||
|
||||
- runing on Ascend
|
||||
|
||||
```bash
|
||||
# distributed training
|
||||
Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# standalone training
|
||||
Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# run evaluation example
|
||||
Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
- running on GPU
|
||||
|
||||
```bash
|
||||
# distributed training example
|
||||
sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# standalone training example
|
||||
sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# run evaluation example
|
||||
sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
# [Script Description](#contents)
|
||||
|
||||
## [Script and Sample Code](#contents)
|
||||
|
||||
```shell
|
||||
.
|
||||
└── squeezenet
|
||||
├── README.md
|
||||
├── scripts
|
||||
├── run_distribute_train.sh # launch ascend distributed training(8 pcs)
|
||||
├── run_standalone_train.sh # launch ascend standalone training(1 pcs)
|
||||
├── run_distribute_train_gpu.sh # launch gpu distributed training(8 pcs)
|
||||
├── run_standalone_train_gpu.sh # launch gpu standalone training(1 pcs)
|
||||
├── run_eval.sh # launch ascend evaluation
|
||||
└── run_eval_gpu.sh # launch gpu evaluation
|
||||
├── src
|
||||
├── config.py # parameter configuration
|
||||
├── dataset.py # data preprocessing
|
||||
├── CrossEntropySmooth.py # loss definition for ImageNet dataset
|
||||
├── lr_generator.py # generate learning rate for each step
|
||||
└── squeezenet.py # squeezenet architecture, including squeezenet and squeezenet_residual
|
||||
├── train.py # train net
|
||||
├── eval.py # eval net
|
||||
└── export.py # export checkpoint files into geir/onnx
|
||||
```
|
||||
|
||||
## [Script Parameters](#contents)
|
||||
|
||||
Parameters for both training and evaluation can be set in config.py
|
||||
|
||||
- config for SqueezeNet, CIFAR-10 dataset
|
||||
|
||||
```py
|
||||
"class_num": 10, # dataset class num
|
||||
"batch_size": 32, # batch size of input tensor
|
||||
"loss_scale": 1024, # loss scale
|
||||
"momentum": 0.9, # momentum
|
||||
"weight_decay": 1e-4, # weight decay
|
||||
"epoch_size": 120, # only valid for taining, which is always 1 for inference
|
||||
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
||||
"save_checkpoint": True, # whether save checkpoint or not
|
||||
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
||||
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
||||
"save_checkpoint_path": "./", # path to save checkpoint
|
||||
"warmup_epochs": 5, # number of warmup epoch
|
||||
"lr_decay_mode": "poly" # decay mode for generating learning rate
|
||||
"lr_init": 0, # initial learning rate
|
||||
"lr_end": 0, # final learning rate
|
||||
"lr_max": 0.01, # maximum learning rate
|
||||
```
|
||||
|
||||
- config for SqueezeNet, ImageNet dataset
|
||||
|
||||
```py
|
||||
"class_num": 1000, # dataset class num
|
||||
"batch_size": 32, # batch size of input tensor
|
||||
"loss_scale": 1024, # loss scale
|
||||
"momentum": 0.9, # momentum
|
||||
"weight_decay": 7e-5, # weight decay
|
||||
"epoch_size": 200, # only valid for taining, which is always 1 for inference
|
||||
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
||||
"save_checkpoint": True, # whether save checkpoint or not
|
||||
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
||||
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
||||
"save_checkpoint_path": "./", # path to save checkpoint
|
||||
"warmup_epochs": 0, # number of warmup epoch
|
||||
"lr_decay_mode": "poly" # decay mode for generating learning rate
|
||||
"use_label_smooth": True, # label smooth
|
||||
"label_smooth_factor": 0.1, # label smooth factor
|
||||
"lr_init": 0, # initial learning rate
|
||||
"lr_end": 0, # final learning rate
|
||||
"lr_max": 0.01, # maximum learning rate
|
||||
```
|
||||
|
||||
- config for SqueezeNet_Residual, CIFAR-10 dataset
|
||||
|
||||
```py
|
||||
"class_num": 10, # dataset class num
|
||||
"batch_size": 32, # batch size of input tensor
|
||||
"loss_scale": 1024, # loss scale
|
||||
"momentum": 0.9, # momentum
|
||||
"weight_decay": 1e-4, # weight decay
|
||||
"epoch_size": 150, # only valid for taining, which is always 1 for inference
|
||||
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
||||
"save_checkpoint": True, # whether save checkpoint or not
|
||||
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
||||
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
||||
"save_checkpoint_path": "./", # path to save checkpoint
|
||||
"warmup_epochs": 5, # number of warmup epoch
|
||||
"lr_decay_mode": "linear" # decay mode for generating learning rate
|
||||
"lr_init": 0, # initial learning rate
|
||||
"lr_end": 0, # final learning rate
|
||||
"lr_max": 0.01, # maximum learning rate
|
||||
```
|
||||
|
||||
- config for SqueezeNet_Residual, ImageNet dataset
|
||||
|
||||
```py
|
||||
"class_num": 1000, # dataset class num
|
||||
"batch_size": 32, # batch size of input tensor
|
||||
"loss_scale": 1024, # loss scale
|
||||
"momentum": 0.9, # momentum
|
||||
"weight_decay": 7e-5, # weight decay
|
||||
"epoch_size": 300, # only valid for taining, which is always 1 for inference
|
||||
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
||||
"save_checkpoint": True, # whether save checkpoint or not
|
||||
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
||||
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
||||
"save_checkpoint_path": "./", # path to save checkpoint
|
||||
"warmup_epochs": 0, # number of warmup epoch
|
||||
"lr_decay_mode": "cosine" # decay mode for generating learning rate
|
||||
"use_label_smooth": True, # label smooth
|
||||
"label_smooth_factor": 0.1, # label smooth factor
|
||||
"lr_init": 0, # initial learning rate
|
||||
"lr_end": 0, # final learning rate
|
||||
"lr_max": 0.01, # maximum learning rate
|
||||
```
|
||||
|
||||
For more configuration details, please refer the script `config.py`.
|
||||
|
||||
## [Training Process](#contents)
|
||||
|
||||
### Usage
|
||||
|
||||
#### Running on Ascend
|
||||
|
||||
```bash
|
||||
# distributed training
|
||||
Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# standalone training
|
||||
Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
```
|
||||
|
||||
For distributed training, a hccl configuration file with JSON format needs to be created in advance.
|
||||
|
||||
Please follow the instructions in the link [hccl_tools](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools).
|
||||
|
||||
Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
|
||||
|
||||
#### Running on GPU
|
||||
|
||||
```bash
|
||||
# distributed training example
|
||||
sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# standalone training example
|
||||
sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
```
|
||||
|
||||
### Result
|
||||
|
||||
- Training SqueezeNet with CIFAR-10 dataset
|
||||
|
||||
```shell
|
||||
# standalone training result
|
||||
epoch: 1 step 1562, loss is 1.7103254795074463
|
||||
epoch: 2 step 1562, loss is 2.06101131439209
|
||||
epoch: 3 step 1562, loss is 1.5594401359558105
|
||||
epoch: 4 step 1562, loss is 1.4127278327941895
|
||||
epoch: 5 step 1562, loss is 1.2140142917633057
|
||||
...
|
||||
```
|
||||
|
||||
- Training SqueezeNet with ImageNet dataset
|
||||
|
||||
```shell
|
||||
# distribute training result(8 pcs)
|
||||
epoch: 1 step 5004, loss is 5.716324329376221
|
||||
epoch: 2 step 5004, loss is 5.350603103637695
|
||||
epoch: 3 step 5004, loss is 4.580031394958496
|
||||
epoch: 4 step 5004, loss is 4.784664154052734
|
||||
epoch: 5 step 5004, loss is 4.136358261108398
|
||||
...
|
||||
```
|
||||
|
||||
- Training SqueezeNet_Residual with CIFAR-10 dataset
|
||||
|
||||
```shell
|
||||
# standalone training result
|
||||
epoch: 1 step 1562, loss is 2.298271656036377
|
||||
epoch: 2 step 1562, loss is 2.2728664875030518
|
||||
epoch: 3 step 1562, loss is 1.9493038654327393
|
||||
epoch: 4 step 1562, loss is 1.7553865909576416
|
||||
epoch: 5 step 1562, loss is 1.3370063304901123
|
||||
...
|
||||
```
|
||||
|
||||
- Training SqueezeNet_Residual with ImageNet dataset
|
||||
|
||||
```shell
|
||||
# distribute training result(8 pcs)
|
||||
epoch: 1 step 5004, loss is 6.802495002746582
|
||||
epoch: 2 step 5004, loss is 6.386072158813477
|
||||
epoch: 3 step 5004, loss is 5.513605117797852
|
||||
epoch: 4 step 5004, loss is 5.312961101531982
|
||||
epoch: 5 step 5004, loss is 4.888848304748535
|
||||
...
|
||||
```
|
||||
|
||||
## [Evaluation Process](#contents)
|
||||
|
||||
### Usage
|
||||
|
||||
#### Running on Ascend
|
||||
|
||||
```shell
|
||||
# evaluation
|
||||
Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
```shell
|
||||
# evaluation example
|
||||
sh scripts/run_eval.sh squeezenet cifar10 0 ~/cifar-10-verify-bin train/squeezenet_cifar10-120_1562.ckpt
|
||||
```
|
||||
|
||||
checkpoint can be produced in training process.
|
||||
|
||||
#### Running on GPU
|
||||
|
||||
```shell
|
||||
sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
### Result
|
||||
|
||||
Evaluation result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the followings in log.
|
||||
|
||||
- Evaluating SqueezeNet with CIFAR-10 dataset
|
||||
|
||||
```shell
|
||||
result: {'top_1_accuracy': 0.8896233974358975, 'top_5_accuracy': 0.9965945512820513}
|
||||
```
|
||||
|
||||
- Evaluating SqueezeNet with ImageNet dataset
|
||||
|
||||
```shell
|
||||
result: {'top_1_accuracy': 0.5851472471190781, 'top_5_accuracy': 0.8105393725992317}
|
||||
```
|
||||
|
||||
- Evaluating SqueezeNet_Residual with CIFAR-10 dataset
|
||||
|
||||
```shell
|
||||
result: {'top_1_accuracy': 0.9077524038461539, 'top_5_accuracy': 0.9969951923076923}
|
||||
```
|
||||
|
||||
- Evaluating SqueezeNet_Residual with ImageNet dataset
|
||||
|
||||
```shell
|
||||
result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.826324423815621}
|
||||
```
|
||||
|
||||
# [Model Description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
||||
### Evaluation Performance
|
||||
|
||||
#### SqueezeNet on CIFAR-10
|
||||
|
||||
| Parameters | Contents |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | SqueezeNet |
|
||||
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
||||
| uploaded Date | 11/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 1.0.1 |
|
||||
| Dataset | CIFAR-10 |
|
||||
| Training Parameters | epoch=120, steps=195, batch_size=32, lr=0.01 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 0.0496 |
|
||||
| Speed(Ascend) | 1pc: 16.7 ms/step; 8pcs: 17.0 ms/step |
|
||||
| Speed(GPU) | 1pc: 44.27 ms/step; |
|
||||
| Total time(Ascend) | 1pc: 55.5 mins; 8pcs: 15.0 mins |
|
||||
| Parameters (M) | 4.8 |
|
||||
| Checkpoint for Fine tuning | 6.4M (.ckpt file) |
|
||||
|
||||
#### SqueezeNet on ImageNet
|
||||
|
||||
| Parameters | Contents |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | SqueezeNet |
|
||||
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
||||
| uploaded Date | 11/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 1.0.1 |
|
||||
| Dataset | ImageNet |
|
||||
| Training Parameters | epoch=200, steps=5004, batch_size=32, lr=0.01 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 2.9150 |
|
||||
| Speed(Ascend) | 8pcs: 19.9 ms/step |
|
||||
| Speed(GPU) | 1pcs: 47.59 ms/step |
|
||||
| Total time(Ascend) | 8pcs: 5.2 hours |
|
||||
| Parameters (M) | 4.8 |
|
||||
| Checkpoint for Fine tuning | 13.3M (.ckpt file) |
|
||||
|
||||
#### SqueezeNet_Residual on CIFAR-10
|
||||
|
||||
| Parameters | Contents |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | SqueezeNet_Residual |
|
||||
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
||||
| uploaded Date | 11/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 1.0.1 |
|
||||
| Dataset | CIFAR-10 |
|
||||
| Training Parameters | epoch=150, steps=195, batch_size=32, lr=0.01 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 0.0641 |
|
||||
| Speed(Ascend) | 1pc: 16.9 ms/step; 8pcs: 17.3 ms/step |
|
||||
| Speed(GPU) | 1pc: 45.23 ms/step; |
|
||||
| Total time(Ascend) | 1pc: 68.6 mins; 8pcs: 20.9 mins |
|
||||
| Parameters (M) | 4.8 |
|
||||
| Checkpoint for Fine tuning | 6.5M (.ckpt file) |
|
||||
|
||||
#### SqueezeNet_Residual on ImageNet
|
||||
|
||||
| Parameters | Contents |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | SqueezeNet_Residual |
|
||||
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
||||
| uploaded Date | 11/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 1.0.1 |
|
||||
| Dataset | ImageNet |
|
||||
| Training Parameters | epoch=300, steps=5004, batch_size=32, lr=0.01 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 2.9040 |
|
||||
| Speed(Ascend) | 8pcs: 20.2 ms/step |
|
||||
| Total time(Ascend) | 8pcs: 8.0 hours |
|
||||
| Parameters (M) | 4.8 |
|
||||
| Checkpoint for Fine tuning | 15.3M (.ckpt file) |
|
||||
|
||||
### Inference Performance
|
||||
|
||||
#### SqueezeNet on CIFAR-10
|
||||
|
||||
| Parameters | Contents |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | SqueezeNet |
|
||||
| Resource | Ascend 910 |
|
||||
| Uploaded Date | 11/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 1.0.1 |
|
||||
| Dataset | CIFAR-10 |
|
||||
| batch_size | 32 |
|
||||
| outputs | probability |
|
||||
| Accuracy | 1pc: 89.0%; 8pcs: 84.4% |
|
||||
|
||||
#### SqueezeNet on ImageNet
|
||||
|
||||
| Parameters | Contents |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | SqueezeNet |
|
||||
| Resource | Ascend 910 |
|
||||
| Uploaded Date | 11/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 1.0.1 |
|
||||
| Dataset | ImageNet |
|
||||
| batch_size | 32 |
|
||||
| outputs | probability |
|
||||
| Accuracy | 8pcs: 58.5%(TOP1), 81.1%(TOP5) |
|
||||
|
||||
#### SqueezeNet_Residual on CIFAR-10
|
||||
|
||||
| Parameters | Contents |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | SqueezeNet_Residual |
|
||||
| Resource | Ascend 910 |
|
||||
| Uploaded Date | 11/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 1.0.1 |
|
||||
| Dataset | CIFAR-10 |
|
||||
| batch_size | 32 |
|
||||
| outputs | probability |
|
||||
| Accuracy | 1pc: 90.8%; 8pcs: 87.4% |
|
||||
|
||||
#### SqueezeNet_Residual on ImageNet
|
||||
|
||||
| Parameters | Contents |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | SqueezeNet_Residual |
|
||||
| Resource | Ascend 910 |
|
||||
| Uploaded Date | 11/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 1.0.1 |
|
||||
| Dataset | ImageNet |
|
||||
| batch_size | 32 |
|
||||
| outputs | probability |
|
||||
| Accuracy | 8pcs: 60.9%(TOP1), 82.6%(TOP5) |
|
||||
|
||||
## [How to use](#contents)
|
||||
|
||||
### Inference
|
||||
|
||||
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
|
||||
|
||||
- Running on Ascend
|
||||
|
||||
```py
|
||||
# Set context
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target='Ascend',
|
||||
device_id=device_id)
|
||||
|
||||
# Load unseen dataset for inference
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=False,
|
||||
batch_size=config.batch_size,
|
||||
target='Ascend')
|
||||
|
||||
# Define model
|
||||
net = squeezenet(num_classes=config.class_num)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
model = Model(net,
|
||||
loss_fn=loss,
|
||||
metrics={'top_1_accuracy', 'top_5_accuracy'})
|
||||
|
||||
# Load pre-trained model
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
|
||||
# Make predictions on the unseen dataset
|
||||
acc = model.eval(dataset)
|
||||
print("accuracy: ", acc)
|
||||
```
|
||||
|
||||
- Running on GPU:
|
||||
|
||||
```py
|
||||
# Set context
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target='GPU',
|
||||
device_id=device_id)
|
||||
|
||||
# Load unseen dataset for inference
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=False,
|
||||
batch_size=config.batch_size,
|
||||
target='GPU')
|
||||
|
||||
# Define model
|
||||
net = squeezenet(num_classes=config.class_num)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
model = Model(net,
|
||||
loss_fn=loss,
|
||||
metrics={'top_1_accuracy', 'top_5_accuracy'})
|
||||
|
||||
# Load pre-trained model
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
|
||||
# Make predictions on the unseen dataset
|
||||
acc = model.eval(dataset)
|
||||
print("accuracy: ", acc)
|
||||
```
|
||||
|
||||
### Continue Training on the Pretrained Model
|
||||
|
||||
- running on Ascend
|
||||
|
||||
```py
|
||||
# Load dataset
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=True,
|
||||
repeat_num=1,
|
||||
batch_size=config.batch_size,
|
||||
target='Ascend')
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
# define net
|
||||
net = squeezenet(num_classes=config.class_num)
|
||||
|
||||
# load checkpoint
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
# init lr
|
||||
lr = get_lr(lr_init=config.lr_init,
|
||||
lr_end=config.lr_end,
|
||||
lr_max=config.lr_max,
|
||||
total_epochs=config.epoch_size,
|
||||
warmup_epochs=config.warmup_epochs,
|
||||
pretrain_epochs=config.pretrain_epoch_size,
|
||||
steps_per_epoch=step_size,
|
||||
lr_decay_mode=config.lr_decay_mode)
|
||||
lr = Tensor(lr)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale,
|
||||
drop_overflow_update=False)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
||||
lr,
|
||||
config.momentum,
|
||||
config.weight_decay,
|
||||
config.loss_scale,
|
||||
use_nesterov=True)
|
||||
model = Model(net,
|
||||
loss_fn=loss,
|
||||
optimizer=opt,
|
||||
loss_scale_manager=loss_scale,
|
||||
metrics={'acc'},
|
||||
amp_level="O2",
|
||||
keep_batchnorm_fp32=False)
|
||||
|
||||
# Set callbacks
|
||||
config_ck = CheckpointConfig(
|
||||
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
||||
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||
time_cb = TimeMonitor(data_size=step_size)
|
||||
ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset,
|
||||
directory=ckpt_save_dir,
|
||||
config=config_ck)
|
||||
loss_cb = LossMonitor()
|
||||
|
||||
# Start training
|
||||
model.train(config.epoch_size - config.pretrain_epoch_size, dataset,
|
||||
callbacks=[time_cb, ckpt_cb, loss_cb])
|
||||
print("train success")
|
||||
```
|
||||
|
||||
- running on GPU
|
||||
|
||||
```py
|
||||
# Load dataset
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=True,
|
||||
repeat_num=1,
|
||||
batch_size=config.batch_size,
|
||||
target='Ascend')
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
# define net
|
||||
net = squeezenet(num_classes=config.class_num)
|
||||
|
||||
# load checkpoint
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
# init lr
|
||||
lr = get_lr(lr_init=config.lr_init,
|
||||
lr_end=config.lr_end,
|
||||
lr_max=config.lr_max,
|
||||
total_epochs=config.epoch_size,
|
||||
warmup_epochs=config.warmup_epochs,
|
||||
pretrain_epochs=config.pretrain_epoch_size,
|
||||
steps_per_epoch=step_size,
|
||||
lr_decay_mode=config.lr_decay_mode)
|
||||
lr = Tensor(lr)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
||||
lr,
|
||||
config.momentum,
|
||||
config.weight_decay,
|
||||
use_nesterov=True)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
||||
|
||||
# Set callbacks
|
||||
config_ck = CheckpointConfig(
|
||||
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
||||
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||
time_cb = TimeMonitor(data_size=step_size)
|
||||
ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset,
|
||||
directory=ckpt_save_dir,
|
||||
config=config_ck)
|
||||
loss_cb = LossMonitor()
|
||||
|
||||
# Start training
|
||||
model.train(config.epoch_size - config.pretrain_epoch_size, dataset,
|
||||
callbacks=[time_cb, ckpt_cb, loss_cb])
|
||||
print("train success")
|
||||
```
|
||||
|
||||
### Transfer Learning
|
||||
|
||||
To be added.
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
|
@ -0,0 +1,95 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""eval squeezenet."""
|
||||
import os
|
||||
import argparse
|
||||
from mindspore import context
|
||||
from mindspore.common import set_seed
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from src.CrossEntropySmooth import CrossEntropySmooth
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'],
|
||||
help='Model.')
|
||||
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
set_seed(1)
|
||||
|
||||
if args_opt.net == "squeezenet":
|
||||
from src.squeezenet import SqueezeNet as squeezenet
|
||||
if args_opt.dataset == "cifar10":
|
||||
from src.config import config1 as config
|
||||
from src.dataset import create_dataset_cifar as create_dataset
|
||||
else:
|
||||
from src.config import config2 as config
|
||||
from src.dataset import create_dataset_imagenet as create_dataset
|
||||
else:
|
||||
from src.squeezenet import SqueezeNet_Residual as squeezenet
|
||||
if args_opt.dataset == "cifar10":
|
||||
from src.config import config3 as config
|
||||
from src.dataset import create_dataset_cifar as create_dataset
|
||||
else:
|
||||
from src.config import config4 as config
|
||||
from src.dataset import create_dataset_imagenet as create_dataset
|
||||
|
||||
if __name__ == '__main__':
|
||||
target = args_opt.device_target
|
||||
|
||||
# init context
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target=target,
|
||||
device_id=device_id)
|
||||
|
||||
# create dataset
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=False,
|
||||
batch_size=config.batch_size,
|
||||
target=target)
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
# define net
|
||||
net = squeezenet(num_classes=config.class_num)
|
||||
|
||||
# load checkpoint
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
|
||||
# define loss
|
||||
if args_opt.dataset == "imagenet":
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropySmooth(sparse=True,
|
||||
reduction='mean',
|
||||
smooth_factor=config.label_smooth_factor,
|
||||
num_classes=config.class_num)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
|
||||
# define model
|
||||
model = Model(net,
|
||||
loss_fn=loss,
|
||||
metrics={'top_1_accuracy', 'top_5_accuracy'})
|
||||
|
||||
# eval model
|
||||
res = model.eval(dataset)
|
||||
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|
|
@ -0,0 +1,54 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
##############export checkpoint file into air and onnx models#################
|
||||
python export.py --net squeezenet --dataset cifar10 --checkpoint_path squeezenet_cifar10-120_1562.ckpt
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
from mindspore import Tensor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'],
|
||||
help='Model.')
|
||||
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
if args_opt.net == "squeezenet":
|
||||
from src.squeezenet import SqueezeNet as squeezenet
|
||||
else:
|
||||
from src.squeezenet import SqueezeNet_Residual as squeezenet
|
||||
if args_opt.dataset == "cifar10":
|
||||
num_classes = 10
|
||||
else:
|
||||
num_classes = 1000
|
||||
|
||||
onnx_filename = args_opt.net + '_' + args_opt.dataset
|
||||
air_filename = args_opt.net + '_' + args_opt.dataset
|
||||
|
||||
net = squeezenet(num_classes=num_classes)
|
||||
|
||||
assert args_opt.checkpoint_path is not None, "checkpoint_path is None."
|
||||
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
input_arr = Tensor(np.zeros([1, 3, 227, 227], np.float32))
|
||||
export(net, input_arr, file_name=onnx_filename, file_format="ONNX")
|
||||
export(net, input_arr, file_name=air_filename, file_format="AIR")
|
|
@ -0,0 +1,99 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 4 ] && [ $# != 5 ]
|
||||
then
|
||||
echo "Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ]
|
||||
then
|
||||
echo "error: the selected net is neither squeezenet nor squeezenet_residual"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $2 != "cifar10" ] && [ $2 != "imagenet" ]
|
||||
then
|
||||
echo "error: the selected dataset is neither cifar10 nor imagenet"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
PATH1=$(get_real_path $3)
|
||||
PATH2=$(get_real_path $4)
|
||||
|
||||
if [ $# == 5 ]
|
||||
then
|
||||
PATH3=$(get_real_path $5)
|
||||
fi
|
||||
|
||||
if [ ! -f $PATH1 ]
|
||||
then
|
||||
echo "error: RANK_TABLE_FILE=$PATH1 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH2 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH2 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# == 5 ] && [ ! -f $PATH3 ]
|
||||
then
|
||||
echo "error: PRETRAINED_CKPT_PATH=$PATH3 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=8
|
||||
export RANK_SIZE=8
|
||||
export RANK_TABLE_FILE=$PATH1
|
||||
|
||||
export SERVER_ID=0
|
||||
rank_start=$((DEVICE_NUM * SERVER_ID))
|
||||
|
||||
for((i=0; i<${DEVICE_NUM}; i++))
|
||||
do
|
||||
export DEVICE_ID=${i}
|
||||
export RANK_ID=$((rank_start + i))
|
||||
rm -rf ./train_parallel$i
|
||||
mkdir ./train_parallel$i
|
||||
cp ./train.py ./train_parallel$i
|
||||
cp -r ./src ./train_parallel$i
|
||||
cd ./train_parallel$i || exit
|
||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > env.log
|
||||
if [ $# == 4 ]
|
||||
then
|
||||
python train.py --net=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log &
|
||||
fi
|
||||
|
||||
if [ $# == 5 ]
|
||||
then
|
||||
python train.py --net=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log &
|
||||
fi
|
||||
|
||||
cd ..
|
||||
done
|
|
@ -0,0 +1,76 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 5 ]
|
||||
then
|
||||
echo "Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ]
|
||||
then
|
||||
echo "error: the selected net is neither squeezenet nor squeezenet_residual"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $2 != "cifar10" ] && [ $2 != "imagenet" ]
|
||||
then
|
||||
echo "error: the selected dataset is neither cifar10 nor imagenet"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
PATH1=$(get_real_path $4)
|
||||
PATH2=$(get_real_path $5)
|
||||
|
||||
|
||||
if [ ! -d $PATH1 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: CHECKPOINT_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export DEVICE_ID=$3
|
||||
export RANK_SIZE=$DEVICE_NUM
|
||||
export RANK_ID=0
|
||||
|
||||
if [ -d "eval" ];
|
||||
then
|
||||
rm -rf ./eval
|
||||
fi
|
||||
mkdir ./eval
|
||||
cp ./eval.py ./eval
|
||||
cp -r ./src ./eval
|
||||
cd ./eval || exit
|
||||
env > env.log
|
||||
echo "start evaluation for device $DEVICE_ID"
|
||||
python eval.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --checkpoint_path=$PATH2 &> log &
|
||||
cd ..
|
|
@ -0,0 +1,87 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 4 ] && [ $# != 5 ]
|
||||
then
|
||||
echo "Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ]
|
||||
then
|
||||
echo "error: the selected net is neither squeezenet nor squeezenet_residual"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $2 != "cifar10" ] && [ $2 != "imagenet" ]
|
||||
then
|
||||
echo "error: the selected dataset is neither cifar10 nor imagenet"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
PATH1=$(get_real_path $4)
|
||||
|
||||
if [ $# == 5 ]
|
||||
then
|
||||
PATH2=$(get_real_path $5)
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH1 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# == 5 ] && [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export DEVICE_ID=$3
|
||||
export RANK_ID=0
|
||||
export RANK_SIZE=1
|
||||
|
||||
if [ -d "train" ];
|
||||
then
|
||||
rm -rf ./train
|
||||
fi
|
||||
mkdir ./train
|
||||
cp ./train.py ./train
|
||||
cp -r ./src ./train
|
||||
cd ./train || exit
|
||||
echo "start training for device $DEVICE_ID"
|
||||
env > env.log
|
||||
if [ $# == 4 ]
|
||||
then
|
||||
python train.py --net=$1 --dataset=$2 --dataset_path=$PATH1 &> log &
|
||||
fi
|
||||
|
||||
if [ $# == 5 ]
|
||||
then
|
||||
python train.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --pre_trained=$PATH2 &> log &
|
||||
fi
|
||||
cd ..
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.sparse = sparse
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
|
||||
|
||||
def construct(self, logit, label):
|
||||
if self.sparse:
|
||||
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
loss = self.ce(logit, label)
|
||||
return loss
|
|
@ -0,0 +1,102 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
network config setting, will be used in train.py and eval.py
|
||||
"""
|
||||
from easydict import EasyDict as ed
|
||||
|
||||
# config for squeezenet, cifar10
|
||||
config1 = ed({
|
||||
"class_num": 10,
|
||||
"batch_size": 32,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 120,
|
||||
"pretrain_epoch_size": 0,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 10,
|
||||
"save_checkpoint_path": "./",
|
||||
"warmup_epochs": 5,
|
||||
"lr_decay_mode": "poly",
|
||||
"lr_init": 0,
|
||||
"lr_end": 0,
|
||||
"lr_max": 0.01
|
||||
})
|
||||
|
||||
# config for squeezenet, imagenet
|
||||
config2 = ed({
|
||||
"class_num": 1000,
|
||||
"batch_size": 32,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 7e-5,
|
||||
"epoch_size": 200,
|
||||
"pretrain_epoch_size": 0,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 10,
|
||||
"save_checkpoint_path": "./",
|
||||
"warmup_epochs": 0,
|
||||
"lr_decay_mode": "poly",
|
||||
"use_label_smooth": True,
|
||||
"label_smooth_factor": 0.1,
|
||||
"lr_init": 0,
|
||||
"lr_end": 0,
|
||||
"lr_max": 0.01
|
||||
})
|
||||
|
||||
# config for squeezenet_residual, cifar10
|
||||
config3 = ed({
|
||||
"class_num": 10,
|
||||
"batch_size": 32,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 150,
|
||||
"pretrain_epoch_size": 0,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 10,
|
||||
"save_checkpoint_path": "./",
|
||||
"warmup_epochs": 5,
|
||||
"lr_decay_mode": "linear",
|
||||
"lr_init": 0,
|
||||
"lr_end": 0,
|
||||
"lr_max": 0.01
|
||||
})
|
||||
|
||||
# config for squeezenet_residual, imagenet
|
||||
config4 = ed({
|
||||
"class_num": 1000,
|
||||
"batch_size": 32,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 7e-5,
|
||||
"epoch_size": 300,
|
||||
"pretrain_epoch_size": 0,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 10,
|
||||
"save_checkpoint_path": "./",
|
||||
"warmup_epochs": 0,
|
||||
"lr_decay_mode": "cosine",
|
||||
"use_label_smooth": True,
|
||||
"label_smooth_factor": 0.1,
|
||||
"lr_init": 0,
|
||||
"lr_end": 0,
|
||||
"lr_max": 0.01
|
||||
})
|
|
@ -0,0 +1,191 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
create train or eval dataset.
|
||||
"""
|
||||
import os
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.vision.c_transforms as C
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
|
||||
|
||||
def create_dataset_cifar(dataset_path,
|
||||
do_train,
|
||||
repeat_num=1,
|
||||
batch_size=32,
|
||||
target="Ascend"):
|
||||
"""
|
||||
create a train or evaluate cifar10 dataset
|
||||
Args:
|
||||
dataset_path(string): the path of dataset.
|
||||
do_train(bool): whether dataset is used for train or eval.
|
||||
repeat_num(int): the repeat times of dataset. Default: 1
|
||||
batch_size(int): the batch size of dataset. Default: 32
|
||||
target(str): the device target. Default: Ascend
|
||||
|
||||
Returns:
|
||||
dataset
|
||||
"""
|
||||
if target == "Ascend":
|
||||
device_num, rank_id = _get_rank_info()
|
||||
else:
|
||||
init()
|
||||
rank_id = get_rank()
|
||||
device_num = get_group_size()
|
||||
|
||||
if device_num == 1:
|
||||
ds = de.Cifar10Dataset(dataset_path,
|
||||
num_parallel_workers=8,
|
||||
shuffle=True)
|
||||
else:
|
||||
ds = de.Cifar10Dataset(dataset_path,
|
||||
num_parallel_workers=8,
|
||||
shuffle=True,
|
||||
num_shards=device_num,
|
||||
shard_id=rank_id)
|
||||
|
||||
# define map operations
|
||||
if do_train:
|
||||
trans = [
|
||||
C.RandomCrop((32, 32), (4, 4, 4, 4)),
|
||||
C.RandomHorizontalFlip(prob=0.5),
|
||||
C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4),
|
||||
C.Resize((227, 227)),
|
||||
C.Rescale(1.0 / 255.0, 0.0),
|
||||
C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
|
||||
C.CutOut(112),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
else:
|
||||
trans = [
|
||||
C.Resize((227, 227)),
|
||||
C.Rescale(1.0 / 255.0, 0.0),
|
||||
C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
ds = ds.map(operations=type_cast_op,
|
||||
input_columns="label",
|
||||
num_parallel_workers=8)
|
||||
ds = ds.map(operations=trans,
|
||||
input_columns="image",
|
||||
num_parallel_workers=8)
|
||||
|
||||
# apply batch operations
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
|
||||
# apply dataset repeat operation
|
||||
ds = ds.repeat(repeat_num)
|
||||
|
||||
return ds
|
||||
|
||||
|
||||
def create_dataset_imagenet(dataset_path,
|
||||
do_train,
|
||||
repeat_num=1,
|
||||
batch_size=32,
|
||||
target="Ascend"):
|
||||
"""
|
||||
create a train or eval imagenet dataset
|
||||
|
||||
Args:
|
||||
dataset_path(string): the path of dataset.
|
||||
do_train(bool): whether dataset is used for train or eval.
|
||||
repeat_num(int): the repeat times of dataset. Default: 1
|
||||
batch_size(int): the batch size of dataset. Default: 32
|
||||
target(str): the device target. Default: Ascend
|
||||
|
||||
Returns:
|
||||
dataset
|
||||
"""
|
||||
if target == "Ascend":
|
||||
device_num, rank_id = _get_rank_info()
|
||||
else:
|
||||
init()
|
||||
rank_id = get_rank()
|
||||
device_num = get_group_size()
|
||||
|
||||
if device_num == 1:
|
||||
ds = de.ImageFolderDataset(dataset_path,
|
||||
num_parallel_workers=8,
|
||||
shuffle=True)
|
||||
else:
|
||||
ds = de.ImageFolderDataset(dataset_path,
|
||||
num_parallel_workers=8,
|
||||
shuffle=True,
|
||||
num_shards=device_num,
|
||||
shard_id=rank_id)
|
||||
|
||||
image_size = 227
|
||||
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
||||
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
|
||||
|
||||
# define map operations
|
||||
if do_train:
|
||||
trans = [
|
||||
C.RandomCropDecodeResize(image_size,
|
||||
scale=(0.08, 1.0),
|
||||
ratio=(0.75, 1.333)),
|
||||
C.RandomHorizontalFlip(prob=0.5),
|
||||
C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.CutOut(112),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
else:
|
||||
trans = [
|
||||
C.Decode(),
|
||||
C.Resize((256, 256)),
|
||||
C.CenterCrop(image_size),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
ds = ds.map(operations=type_cast_op,
|
||||
input_columns="label",
|
||||
num_parallel_workers=8)
|
||||
ds = ds.map(operations=trans,
|
||||
input_columns="image",
|
||||
num_parallel_workers=8)
|
||||
|
||||
# apply batch operations
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
|
||||
# apply dataset repeat operation
|
||||
ds = ds.repeat(repeat_num)
|
||||
|
||||
return ds
|
||||
|
||||
|
||||
def _get_rank_info():
|
||||
"""
|
||||
get rank size and rank id
|
||||
"""
|
||||
rank_size = int(os.environ.get("RANK_SIZE", 1))
|
||||
|
||||
if rank_size > 1:
|
||||
rank_size = get_group_size()
|
||||
rank_id = get_rank()
|
||||
else:
|
||||
rank_size = 1
|
||||
rank_id = 0
|
||||
|
||||
return rank_size, rank_id
|
|
@ -0,0 +1,106 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""learning rate generator"""
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_lr(lr_init, lr_end, lr_max, total_epochs, warmup_epochs,
|
||||
pretrain_epochs, steps_per_epoch, lr_decay_mode):
|
||||
"""
|
||||
generate learning rate array
|
||||
|
||||
Args:
|
||||
lr_init(float): init learning rate
|
||||
lr_end(float): end learning rate
|
||||
lr_max(float): max learning rate
|
||||
total_epochs(int): total epoch of training
|
||||
warmup_epochs(int): number of warmup epochs
|
||||
pretrain_epochs(int): number of pretrain epochs
|
||||
steps_per_epoch(int): steps of one epoch
|
||||
lr_decay_mode(string): learning rate decay mode,
|
||||
including steps, poly, linear or cosine
|
||||
|
||||
Returns:
|
||||
np.array, learning rate array
|
||||
"""
|
||||
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
warmup_steps = steps_per_epoch * warmup_epochs
|
||||
pretrain_steps = steps_per_epoch * pretrain_epochs
|
||||
decay_steps = total_steps - warmup_steps
|
||||
|
||||
if lr_decay_mode == 'steps':
|
||||
decay_epoch_index = [
|
||||
0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps
|
||||
]
|
||||
for i in range(total_steps):
|
||||
if i < decay_epoch_index[0]:
|
||||
lr = lr_max
|
||||
elif i < decay_epoch_index[1]:
|
||||
lr = lr_max * 0.1
|
||||
elif i < decay_epoch_index[2]:
|
||||
lr = lr_max * 0.01
|
||||
else:
|
||||
lr = lr_max * 0.001
|
||||
lr_each_step.append(lr)
|
||||
|
||||
elif lr_decay_mode == 'poly':
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = linear_warmup_lr(i, warmup_steps, lr_max, lr_init)
|
||||
else:
|
||||
base = (1.0 - (i - warmup_steps) / decay_steps)
|
||||
lr = lr_max * base * base
|
||||
lr_each_step.append(lr)
|
||||
|
||||
elif lr_decay_mode == 'linear':
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = linear_warmup_lr(i, warmup_steps, lr_max, lr_init)
|
||||
else:
|
||||
lr = lr_max - (lr_max - lr_end) * (i -
|
||||
warmup_steps) / decay_steps
|
||||
lr_each_step.append(lr)
|
||||
|
||||
elif lr_decay_mode == 'cosine':
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = linear_warmup_lr(i, warmup_steps, lr_max, lr_init)
|
||||
else:
|
||||
linear_decay = (total_steps - i) / decay_steps
|
||||
cosine_decay = 0.5 * (
|
||||
1 + math.cos(math.pi * 2 * 0.47 *
|
||||
(i - warmup_steps) / decay_steps))
|
||||
decayed = linear_decay * cosine_decay + 0.00001
|
||||
lr = lr_max * decayed
|
||||
lr_each_step.append(lr)
|
||||
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
'Learning rate decay mode [{:s}] cannot be recognized'.format(
|
||||
lr_decay_mode))
|
||||
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
learning_rate = lr_each_step[pretrain_steps:]
|
||||
|
||||
return learning_rate
|
||||
|
||||
|
||||
def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
|
||||
lr_inc = (base_lr - init_lr) / warmup_steps
|
||||
lr = init_lr + lr_inc * current_step
|
||||
return lr
|
|
@ -0,0 +1,222 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Squeezenet."""
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common import initializer as weight_init
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Fire(nn.Cell):
|
||||
"""
|
||||
Fire network definition.
|
||||
"""
|
||||
def __init__(self, inplanes, squeeze_planes, expand1x1_planes,
|
||||
expand3x3_planes):
|
||||
super(Fire, self).__init__()
|
||||
self.inplanes = inplanes
|
||||
self.squeeze = nn.Conv2d(inplanes,
|
||||
squeeze_planes,
|
||||
kernel_size=1,
|
||||
has_bias=True)
|
||||
self.squeeze_activation = nn.ReLU()
|
||||
self.expand1x1 = nn.Conv2d(squeeze_planes,
|
||||
expand1x1_planes,
|
||||
kernel_size=1,
|
||||
has_bias=True)
|
||||
self.expand1x1_activation = nn.ReLU()
|
||||
self.expand3x3 = nn.Conv2d(squeeze_planes,
|
||||
expand3x3_planes,
|
||||
kernel_size=3,
|
||||
pad_mode='same',
|
||||
has_bias=True)
|
||||
self.expand3x3_activation = nn.ReLU()
|
||||
self.concat = P.Concat(axis=1)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.squeeze_activation(self.squeeze(x))
|
||||
return self.concat((self.expand1x1_activation(self.expand1x1(x)),
|
||||
self.expand3x3_activation(self.expand3x3(x))))
|
||||
|
||||
|
||||
class SqueezeNet(nn.Cell):
|
||||
r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
|
||||
accuracy with 50x fewer parameters and <0.5MB model size"
|
||||
<https://arxiv.org/abs/1602.07360>`_ paper.
|
||||
|
||||
Get SqueezeNet neural network.
|
||||
|
||||
Args:
|
||||
num_classes (int): Class number.
|
||||
|
||||
Returns:
|
||||
Cell, cell instance of SqueezeNet neural network.
|
||||
|
||||
Examples:
|
||||
>>> net = SqueezeNet(10)
|
||||
"""
|
||||
def __init__(self, num_classes=10):
|
||||
super(SqueezeNet, self).__init__()
|
||||
|
||||
self.features = nn.SequentialCell([
|
||||
nn.Conv2d(3,
|
||||
96,
|
||||
kernel_size=7,
|
||||
stride=2,
|
||||
pad_mode='valid',
|
||||
has_bias=True),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
Fire(96, 16, 64, 64),
|
||||
Fire(128, 16, 64, 64),
|
||||
Fire(128, 32, 128, 128),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
Fire(256, 32, 128, 128),
|
||||
Fire(256, 48, 192, 192),
|
||||
Fire(384, 48, 192, 192),
|
||||
Fire(384, 64, 256, 256),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
Fire(512, 64, 256, 256),
|
||||
])
|
||||
|
||||
# Final convolution is initialized differently from the rest
|
||||
self.final_conv = nn.Conv2d(512,
|
||||
num_classes,
|
||||
kernel_size=1,
|
||||
has_bias=True)
|
||||
self.dropout = nn.Dropout(keep_prob=0.5)
|
||||
self.relu = nn.ReLU()
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.flatten = nn.Flatten()
|
||||
self.custom_init_weight()
|
||||
|
||||
def custom_init_weight(self):
|
||||
"""
|
||||
Init the weight of Conv2d in the net.
|
||||
"""
|
||||
for _, cell in self.cells_and_names():
|
||||
if isinstance(cell, nn.Conv2d):
|
||||
if cell is self.final_conv:
|
||||
cell.weight.set_data(
|
||||
weight_init.initializer('normal', cell.weight.shape,
|
||||
cell.weight.dtype))
|
||||
else:
|
||||
cell.weight.set_data(
|
||||
weight_init.initializer('he_uniform',
|
||||
cell.weight.shape,
|
||||
cell.weight.dtype))
|
||||
if cell.bias is not None:
|
||||
cell.bias.set_data(
|
||||
weight_init.initializer('zeros', cell.bias.shape,
|
||||
cell.bias.dtype))
|
||||
|
||||
def construct(self, x):
|
||||
x = self.features(x)
|
||||
x = self.dropout(x)
|
||||
x = self.final_conv(x)
|
||||
x = self.relu(x)
|
||||
x = self.mean(x, (2, 3))
|
||||
x = self.flatten(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SqueezeNet_Residual(nn.Cell):
|
||||
r"""SqueezeNet with simple bypass model architecture from the `"SqueezeNet:
|
||||
AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
|
||||
<https://arxiv.org/abs/1602.07360>`_ paper.
|
||||
|
||||
Get SqueezeNet with simple bypass neural network.
|
||||
|
||||
Args:
|
||||
num_classes (int): Class number.
|
||||
|
||||
Returns:
|
||||
Cell, cell instance of SqueezeNet with simple bypass neural network.
|
||||
|
||||
Examples:
|
||||
>>> net = SqueezeNet_Residual(10)
|
||||
"""
|
||||
def __init__(self, num_classes=10):
|
||||
super(SqueezeNet_Residual, self).__init__()
|
||||
|
||||
self.conv1 = nn.Conv2d(3,
|
||||
96,
|
||||
kernel_size=7,
|
||||
stride=2,
|
||||
pad_mode='valid',
|
||||
has_bias=True)
|
||||
self.fire2 = Fire(96, 16, 64, 64)
|
||||
self.fire3 = Fire(128, 16, 64, 64)
|
||||
self.fire4 = Fire(128, 32, 128, 128)
|
||||
self.fire5 = Fire(256, 32, 128, 128)
|
||||
self.fire6 = Fire(256, 48, 192, 192)
|
||||
self.fire7 = Fire(384, 48, 192, 192)
|
||||
self.fire8 = Fire(384, 64, 256, 256)
|
||||
self.fire9 = Fire(512, 64, 256, 256)
|
||||
# Final convolution is initialized differently from the rest
|
||||
self.conv10 = nn.Conv2d(512, num_classes, kernel_size=1, has_bias=True)
|
||||
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2)
|
||||
self.add = P.TensorAdd()
|
||||
self.dropout = nn.Dropout(keep_prob=0.5)
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.flatten = nn.Flatten()
|
||||
self.custom_init_weight()
|
||||
|
||||
def custom_init_weight(self):
|
||||
"""
|
||||
Init the weight of Conv2d in the net.
|
||||
"""
|
||||
for _, cell in self.cells_and_names():
|
||||
if isinstance(cell, nn.Conv2d):
|
||||
if cell is self.conv10:
|
||||
cell.weight.set_data(
|
||||
weight_init.initializer('normal', cell.weight.shape,
|
||||
cell.weight.dtype))
|
||||
else:
|
||||
cell.weight.set_data(
|
||||
weight_init.initializer('xavier_uniform',
|
||||
cell.weight.shape,
|
||||
cell.weight.dtype))
|
||||
if cell.bias is not None:
|
||||
cell.bias.set_data(
|
||||
weight_init.initializer('zeros', cell.bias.shape,
|
||||
cell.bias.dtype))
|
||||
|
||||
def construct(self, x):
|
||||
"""
|
||||
Construct squeezenet_residual.
|
||||
"""
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.fire2(x)
|
||||
x = self.add(x, self.fire3(x))
|
||||
x = self.fire4(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.add(x, self.fire5(x))
|
||||
x = self.fire6(x)
|
||||
x = self.add(x, self.fire7(x))
|
||||
x = self.fire8(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.add(x, self.fire9(x))
|
||||
x = self.dropout(x)
|
||||
x = self.conv10(x)
|
||||
x = self.relu(x)
|
||||
x = self.mean(x, (2, 3))
|
||||
x = self.flatten(x)
|
||||
|
||||
return x
|
|
@ -0,0 +1,169 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""train squeezenet."""
|
||||
import os
|
||||
import argparse
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
from mindspore.common import set_seed
|
||||
from src.lr_generator import get_lr
|
||||
from src.CrossEntropySmooth import CrossEntropySmooth
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'],
|
||||
help='Model.')
|
||||
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.')
|
||||
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
|
||||
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
set_seed(1)
|
||||
|
||||
if args_opt.net == "squeezenet":
|
||||
from src.squeezenet import SqueezeNet as squeezenet
|
||||
if args_opt.dataset == "cifar10":
|
||||
from src.config import config1 as config
|
||||
from src.dataset import create_dataset_cifar as create_dataset
|
||||
else:
|
||||
from src.config import config2 as config
|
||||
from src.dataset import create_dataset_imagenet as create_dataset
|
||||
else:
|
||||
from src.squeezenet import SqueezeNet_Residual as squeezenet
|
||||
if args_opt.dataset == "cifar10":
|
||||
from src.config import config3 as config
|
||||
from src.dataset import create_dataset_cifar as create_dataset
|
||||
else:
|
||||
from src.config import config4 as config
|
||||
from src.dataset import create_dataset_imagenet as create_dataset
|
||||
|
||||
if __name__ == '__main__':
|
||||
target = args_opt.device_target
|
||||
ckpt_save_dir = config.save_checkpoint_path
|
||||
|
||||
# init context
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target=target)
|
||||
if args_opt.run_distribute:
|
||||
if target == "Ascend":
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(device_id=device_id,
|
||||
enable_auto_mixed_precision=True)
|
||||
context.set_auto_parallel_context(
|
||||
device_num=args_opt.device_num,
|
||||
parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True)
|
||||
init()
|
||||
# GPU target
|
||||
else:
|
||||
init()
|
||||
context.set_auto_parallel_context(
|
||||
device_num=get_group_size(),
|
||||
parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True)
|
||||
ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(
|
||||
get_rank()) + "/"
|
||||
|
||||
# create dataset
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=True,
|
||||
repeat_num=1,
|
||||
batch_size=config.batch_size,
|
||||
target=target)
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
# define net
|
||||
net = squeezenet(num_classes=config.class_num)
|
||||
|
||||
# load checkpoint
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
# init lr
|
||||
lr = get_lr(lr_init=config.lr_init,
|
||||
lr_end=config.lr_end,
|
||||
lr_max=config.lr_max,
|
||||
total_epochs=config.epoch_size,
|
||||
warmup_epochs=config.warmup_epochs,
|
||||
pretrain_epochs=config.pretrain_epoch_size,
|
||||
steps_per_epoch=step_size,
|
||||
lr_decay_mode=config.lr_decay_mode)
|
||||
lr = Tensor(lr)
|
||||
|
||||
# define loss
|
||||
if args_opt.dataset == "imagenet":
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropySmooth(sparse=True,
|
||||
reduction='mean',
|
||||
smooth_factor=config.label_smooth_factor,
|
||||
num_classes=config.class_num)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
|
||||
# define opt, model
|
||||
if target == "Ascend":
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale,
|
||||
drop_overflow_update=False)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
||||
lr,
|
||||
config.momentum,
|
||||
config.weight_decay,
|
||||
config.loss_scale,
|
||||
use_nesterov=True)
|
||||
model = Model(net,
|
||||
loss_fn=loss,
|
||||
optimizer=opt,
|
||||
loss_scale_manager=loss_scale,
|
||||
metrics={'acc'},
|
||||
amp_level="O2",
|
||||
keep_batchnorm_fp32=False)
|
||||
else:
|
||||
# GPU target
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
||||
lr,
|
||||
config.momentum,
|
||||
config.weight_decay,
|
||||
use_nesterov=True)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
||||
|
||||
# define callbacks
|
||||
time_cb = TimeMonitor(data_size=step_size)
|
||||
loss_cb = LossMonitor()
|
||||
cb = [time_cb, loss_cb]
|
||||
if config.save_checkpoint:
|
||||
config_ck = CheckpointConfig(
|
||||
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
||||
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||
ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset,
|
||||
directory=ckpt_save_dir,
|
||||
config=config_ck)
|
||||
cb += [ckpt_cb]
|
||||
|
||||
# train model
|
||||
model.train(config.epoch_size - config.pretrain_epoch_size,
|
||||
dataset,
|
||||
callbacks=cb)
|
Loading…
Reference in New Issue