forked from mindspore-Ecosystem/mindspore
add_st
This commit is contained in:
parent
6ae3bc6dfe
commit
033e56ac48
|
@ -0,0 +1,84 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations.array_ops as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
class BatchToSpaceNet(nn.Cell):
|
||||
def __init__(self, nptype, block_size=2, input_shape=(4,1,2,2)):
|
||||
super(BatchToSpaceNet, self).__init__()
|
||||
self.BatchToSpace = P.BatchToSpace(block_size=block_size, crops=[[0,0],[0,0]])
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
|
||||
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
y1 = self.BatchToSpace(self.x1)
|
||||
return y1
|
||||
|
||||
|
||||
def BatchToSpace(nptype, block_size=2, input_shape=(4,1,2,2)):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.array([[[[0, 4, 1, 5],
|
||||
[8, 12, 9, 13],
|
||||
[2, 6, 3, 7],
|
||||
[10, 14, 11, 15]]]]).astype(nptype)
|
||||
|
||||
dts = BatchToSpaceNet(nptype, block_size, input_shape)
|
||||
output = dts()
|
||||
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
def BatchToSpace_pynative(nptype, block_size=2, input_shape=(4,1,2,2)):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.array([[[[0, 4, 1, 5],
|
||||
[8, 12, 9, 13],
|
||||
[2, 6, 3, 7],
|
||||
[10, 14, 11, 15]]]]).astype(nptype)
|
||||
|
||||
dts = P.BatchToSpace(block_size=block_size, crops=[[0,0],[0,0]])
|
||||
arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))
|
||||
output = dts(arr_input)
|
||||
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchtospace_graph_float32():
|
||||
BatchToSpace(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchtospace_graph_float16():
|
||||
BatchToSpace(np.float16)
|
|
@ -0,0 +1,92 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations.array_ops as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
class SpaceToBatchNet(nn.Cell):
|
||||
def __init__(self, nptype, block_size=2, input_shape=(1, 1, 4, 4)):
|
||||
super(SpaceToBatchNet, self).__init__()
|
||||
self.SpaceToBatch = P.SpaceToBatch(block_size=block_size, paddings=[[0,0],[0,0]])
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
|
||||
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
y1 = self.BatchToSpace(self.x1)
|
||||
return y1
|
||||
|
||||
|
||||
def SpaceToBatch(nptype, block_size=2, input_shape=(1, 1, 4, 4)):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.array([[[[0, 2],
|
||||
[8, 10]]],
|
||||
[[[1, 3],
|
||||
[9, 11]]],
|
||||
[[[4, 6],
|
||||
[12, 14]]],
|
||||
[[[5, 7],
|
||||
[13, 15]]]]).astype(nptype)
|
||||
|
||||
dts = SpaceToBatchNet(nptype, block_size, input_shape)
|
||||
output = dts()
|
||||
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
def SpaceToBatch_pynative(nptype, block_size=2, input_shape=(1, 1, 4, 4)):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.array([[[[0, 2],
|
||||
[8, 10]]],
|
||||
[[[1, 3],
|
||||
[9, 11]]],
|
||||
[[[4, 6],
|
||||
[12, 14]]],
|
||||
[[[5, 7],
|
||||
[13, 15]]]]).astype(nptype)
|
||||
|
||||
dts = P.SpaceToBatch(block_size=block_size, paddings=[[0,0],[0,0]])
|
||||
arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))
|
||||
output = dts(arr_input)
|
||||
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_spacetobatch_graph_float32():
|
||||
SpaceToBatch(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_spacetobatch_graph_float16():
|
||||
SpaceToBatch(np.float16)
|
Loading…
Reference in New Issue