This commit is contained in:
zong_shuai 2021-08-30 10:02:22 +08:00
parent 6ae3bc6dfe
commit 033e56ac48
2 changed files with 176 additions and 0 deletions

View File

@ -0,0 +1,84 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
import mindspore.ops.operations.array_ops as P
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
class BatchToSpaceNet(nn.Cell):
def __init__(self, nptype, block_size=2, input_shape=(4,1,2,2)):
super(BatchToSpaceNet, self).__init__()
self.BatchToSpace = P.BatchToSpace(block_size=block_size, crops=[[0,0],[0,0]])
input_size = 1
for i in input_shape:
input_size = input_size*i
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
@ms_function
def construct(self):
y1 = self.BatchToSpace(self.x1)
return y1
def BatchToSpace(nptype, block_size=2, input_shape=(4,1,2,2)):
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
input_size = 1
for i in input_shape:
input_size = input_size*i
expect = np.array([[[[0, 4, 1, 5],
[8, 12, 9, 13],
[2, 6, 3, 7],
[10, 14, 11, 15]]]]).astype(nptype)
dts = BatchToSpaceNet(nptype, block_size, input_shape)
output = dts()
assert (output.asnumpy() == expect).all()
def BatchToSpace_pynative(nptype, block_size=2, input_shape=(4,1,2,2)):
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
input_size = 1
for i in input_shape:
input_size = input_size*i
expect = np.array([[[[0, 4, 1, 5],
[8, 12, 9, 13],
[2, 6, 3, 7],
[10, 14, 11, 15]]]]).astype(nptype)
dts = P.BatchToSpace(block_size=block_size, crops=[[0,0],[0,0]])
arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))
output = dts(arr_input)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_batchtospace_graph_float32():
BatchToSpace(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_batchtospace_graph_float16():
BatchToSpace(np.float16)

View File

@ -0,0 +1,92 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
import mindspore.ops.operations.array_ops as P
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
class SpaceToBatchNet(nn.Cell):
def __init__(self, nptype, block_size=2, input_shape=(1, 1, 4, 4)):
super(SpaceToBatchNet, self).__init__()
self.SpaceToBatch = P.SpaceToBatch(block_size=block_size, paddings=[[0,0],[0,0]])
input_size = 1
for i in input_shape:
input_size = input_size*i
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
@ms_function
def construct(self):
y1 = self.BatchToSpace(self.x1)
return y1
def SpaceToBatch(nptype, block_size=2, input_shape=(1, 1, 4, 4)):
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
input_size = 1
for i in input_shape:
input_size = input_size*i
expect = np.array([[[[0, 2],
[8, 10]]],
[[[1, 3],
[9, 11]]],
[[[4, 6],
[12, 14]]],
[[[5, 7],
[13, 15]]]]).astype(nptype)
dts = SpaceToBatchNet(nptype, block_size, input_shape)
output = dts()
assert (output.asnumpy() == expect).all()
def SpaceToBatch_pynative(nptype, block_size=2, input_shape=(1, 1, 4, 4)):
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
input_size = 1
for i in input_shape:
input_size = input_size*i
expect = np.array([[[[0, 2],
[8, 10]]],
[[[1, 3],
[9, 11]]],
[[[4, 6],
[12, 14]]],
[[[5, 7],
[13, 15]]]]).astype(nptype)
dts = P.SpaceToBatch(block_size=block_size, paddings=[[0,0],[0,0]])
arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))
output = dts(arr_input)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_spacetobatch_graph_float32():
SpaceToBatch(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_spacetobatch_graph_float16():
SpaceToBatch(np.float16)