This commit is contained in:
ttudu 2021-09-13 09:43:35 +08:00
parent 87381a1cf9
commit 01b6f33976
6 changed files with 419 additions and 16 deletions

View File

@ -103,11 +103,10 @@ class MS_API GraphCell final : public Cell<GraphCell> {
Status Run(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs) override;
std::vector<MSTensor> GetInputs();
std::vector<MSTensor> GetOutputs();
Status Load(uint32_t device_id);
private:
friend class Model;
friend class ModelImpl;
Status Load(uint32_t device_id);
std::shared_ptr<Graph> graph_;
std::shared_ptr<GraphImpl> executor_;

View File

@ -78,7 +78,7 @@ Status AclModel::Build() {
MS_EXCEPTION_IF_NULL(graph);
auto graph_cell = std::make_shared<GraphCell>(graph);
MS_EXCEPTION_IF_NULL(graph_cell);
auto ret = ModelImpl::Load(graph_cell, options->GetDeviceID());
auto ret = graph_cell->Load(options->GetDeviceID());
if (ret != kSuccess) {
MS_LOG(ERROR) << "Load failed.";
return ret;

View File

@ -142,7 +142,12 @@ GraphId MultiGraphAclSession::CompileGraphImpl(const AnfNodePtrList &lst, const
}
std::shared_ptr<Graph> graph = std::make_shared<Graph>(std::make_shared<Graph::GraphData>(om_data, ModelType::kOM));
MS_EXCEPTION_IF_NULL(graph);
graphs_[kernel_graph->graph_id()] = GraphCell(graph);
auto graph_cell = GraphCell(graph);
auto ret = graph_cell.Load(options_->GetDeviceID());
if (ret != kSuccess) {
MS_LOG(EXCEPTION) << "Load failed.";
}
graphs_[kernel_graph->graph_id()] = graph_cell;
MS_LOG(INFO) << "Mulit graph compile success, graph id " << kernel_graph->graph_id();
return kernel_graph->graph_id();
}
@ -400,14 +405,13 @@ Status AclModelMulti::Predict(const std::vector<MSTensor> &inputs, std::vector<M
return kMCFailed;
}
if (inputs.size() != inputs_.size() && !inputs_.empty() != 0) {
MS_LOG(ERROR) << "Input Size is wrong.";
return kMCFailed;
}
if (inputs_.empty()) {
inputs_ = inputs;
} else {
if (inputs.size() != inputs_.size()) {
MS_LOG(ERROR) << "Input Size is wrong.";
return kMCFailed;
}
for (size_t i = 0; i < inputs_.size(); ++i) {
auto input_tensor = MSTensor::CreateTensor(inputs_[i].Name(), inputs_[i].DataType(), inputs_[i].Shape(),
inputs[i].Data().get(), inputs[i].DataSize());

View File

@ -47,11 +47,6 @@ class ModelImpl {
virtual bool CheckModelSupport(enum ModelType model_type) { return false; }
protected:
Status Load(const std::shared_ptr<GraphCell> &graph_cell, uint32_t device_id) {
MS_EXCEPTION_IF_NULL(graph_cell);
return graph_cell->Load(device_id);
}
FuncGraphPtr GetFuncGraph() const {
if (graph_->ModelType() != ModelType::kMindIR) {
return nullptr;

View File

@ -76,7 +76,7 @@ std::shared_ptr<GraphCell> MsModel::GenerateGraphCell(const std::vector<std::vec
auto graph_cell = std::make_shared<GraphCell>(graph);
MS_EXCEPTION_IF_NULL(graph_cell);
graph_cell->SetContext(model_context_);
auto ret = ModelImpl::Load(graph_cell, GetDeviceID());
auto ret = graph_cell->Load(GetDeviceID());
if (ret != kSuccess) {
MS_LOG(ERROR) << "Load failed.";
return nullptr;
@ -102,7 +102,7 @@ Status MsModel::Build() {
auto graph_cell = std::make_shared<GraphCell>(graph);
MS_EXCEPTION_IF_NULL(graph_cell);
graph_cell->SetContext(model_context_);
auto ret = ModelImpl::Load(graph_cell, GetDeviceID());
auto ret = graph_cell->Load(GetDeviceID());
if (ret != kSuccess) {
MS_LOG(ERROR) << "Load failed.";
return ret;

View File

@ -0,0 +1,405 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <vector>
#include "common/common_test.h"
#include "include/api/model.h"
#include "include/api/serialization.h"
#include "include/api/context.h"
using namespace mindspore;
static constexpr char kIfbyIfFile[] = "/home/workspace/mindspore_dataset/mindir/control/ifbyif.mindir";
static constexpr char kSimpleWhileFile[] = "/home/workspace/mindspore_dataset/mindir/control/simple_while.mindir";
static constexpr char kMixIfWhileFile[] = "/home/workspace/mindspore_dataset/mindir/control/mix_while_if.mindir";
static constexpr char kRecursiveFile[] = "/home/workspace/mindspore_dataset/mindir/control/fibonacci.mindir";
static constexpr char kSingleForFile[] = "/home/workspace/mindspore_dataset/mindir/control/single_for.mindir";
static constexpr char kSingleOrFile[] = "/home/workspace/mindspore_dataset/mindir/control/single_or.mindir";
static constexpr char kSingleSwitchFile[] = "/home/workspace/mindspore_dataset/mindir/control/switch_layer_net.mindir";
static constexpr float kConstValue = 0.1234;
static const std::vector<float> input_data(2 * 3 * 4 * 5, kConstValue);
class TestControl : public ST::Common {
public:
TestControl() {}
};
TEST_F(TestControl, InferIfbyIf) {
auto context = ContextAutoSet();
Graph graph;
ASSERT_TRUE(Serialization::Load(kIfbyIfFile, ModelType::kMindIR, &graph));
Model control_model;
ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess);
// assert inputs
std::vector<MSTensor> inputs_before = control_model.GetInputs();
ASSERT_EQ(5, inputs_before.size());
EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeFloat32);
EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeFloat32);
EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeBool);
EXPECT_EQ(inputs_before[3].DataType(), DataType::kNumberTypeBool);
EXPECT_EQ(inputs_before[4].DataType(), DataType::kNumberTypeFloat32);
ASSERT_EQ(inputs_before[0].DataSize(), sizeof(float));
ASSERT_EQ(inputs_before[1].DataSize(), sizeof(float));
ASSERT_EQ(inputs_before[2].DataSize(), sizeof(bool));
ASSERT_EQ(inputs_before[3].DataSize(), sizeof(bool));
ASSERT_EQ(inputs_before[4].DataSize(), sizeof(float) * input_data.size());
ASSERT_EQ(inputs_before[0].Shape().size(), 1);
EXPECT_EQ(inputs_before[0].Shape()[0], 1);
ASSERT_EQ(inputs_before[1].Shape().size(), 1);
EXPECT_EQ(inputs_before[1].Shape()[0], 1);
ASSERT_EQ(inputs_before[2].Shape().size(), 1);
EXPECT_EQ(inputs_before[2].Shape()[0], 1);
ASSERT_EQ(inputs_before[3].Shape().size(), 1);
EXPECT_EQ(inputs_before[3].Shape()[0], 1);
ASSERT_EQ(inputs_before[4].Shape().size(), 4);
EXPECT_EQ(inputs_before[4].Shape()[0], 2);
EXPECT_EQ(inputs_before[4].Shape()[1], 3);
EXPECT_EQ(inputs_before[4].Shape()[2], 4);
EXPECT_EQ(inputs_before[4].Shape()[3], 5);
// prepare input
std::vector<MSTensor> outputs;
std::vector<MSTensor> inputs;
float x = 2.345678, y = 1.234567;
bool cond1 = true, cond2 = false;
inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x,
sizeof(float));
inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &y,
sizeof(float));
inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(), &cond1,
sizeof(bool));
inputs.emplace_back(inputs_before[3].Name(), inputs_before[3].DataType(), inputs_before[3].Shape(), &cond2,
sizeof(bool));
inputs.emplace_back(inputs_before[4].Name(), inputs_before[4].DataType(), inputs_before[4].Shape(), input_data.data(),
sizeof(float) * input_data.size());
// infer
ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess);
// assert output
ASSERT_TRUE(outputs.size() == 1);
auto out = outputs[0];
ASSERT_TRUE(out.DataSize() == sizeof(float) * input_data.size());
auto out_data = out.Data();
auto p = reinterpret_cast<const float *>(out_data.get());
for (size_t i = 0; i < out.DataSize() / sizeof(float); ++i) {
ASSERT_LE(std::abs(p[i] - kConstValue * 24), 1e-3);
}
}
TEST_F(TestControl, InferSimpleWhile) {
auto context = ContextAutoSet();
Graph graph;
ASSERT_TRUE(Serialization::Load(kSimpleWhileFile, ModelType::kMindIR, &graph));
Model control_model;
ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess);
// assert inputs
std::vector<MSTensor> inputs_before = control_model.GetInputs();
ASSERT_EQ(3, inputs_before.size());
EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeBool);
EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeBool);
EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeFloat32);
ASSERT_EQ(inputs_before[0].DataSize(), sizeof(bool));
ASSERT_EQ(inputs_before[1].DataSize(), sizeof(bool));
ASSERT_EQ(inputs_before[2].DataSize(), sizeof(float) * input_data.size());
ASSERT_EQ(inputs_before[0].Shape().size(), 1);
EXPECT_EQ(inputs_before[0].Shape()[0], 1);
ASSERT_EQ(inputs_before[1].Shape().size(), 1);
EXPECT_EQ(inputs_before[1].Shape()[0], 1);
ASSERT_EQ(inputs_before[2].Shape().size(), 4);
EXPECT_EQ(inputs_before[2].Shape()[0], 2);
EXPECT_EQ(inputs_before[2].Shape()[1], 3);
EXPECT_EQ(inputs_before[2].Shape()[2], 4);
EXPECT_EQ(inputs_before[2].Shape()[3], 5);
// prepare input
std::vector<MSTensor> outputs;
std::vector<MSTensor> inputs;
{
bool x = true, y = false;
inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x,
sizeof(bool));
inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &y,
sizeof(bool));
inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(),
input_data.data(), sizeof(float) * input_data.size());
}
// infer
ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess);
// assert output
ASSERT_TRUE(outputs.size() == 1);
auto out = outputs[0];
ASSERT_TRUE(out.DataSize() == sizeof(float) * input_data.size());
auto out_data = out.Data();
auto p = reinterpret_cast<const float *>(out_data.get());
for (size_t i = 0; i < out.DataSize() / sizeof(float); ++i) {
ASSERT_LE(std::abs(p[i] - kConstValue * 3), 1e-3);
}
}
TEST_F(TestControl, InferRecursive) {
auto context = ContextAutoSet();
Graph graph;
ASSERT_TRUE(Serialization::Load(kRecursiveFile, ModelType::kMindIR, &graph));
Model control_model;
ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess);
// assert inputs
std::vector<MSTensor> inputs_before = control_model.GetInputs();
ASSERT_EQ(1, inputs_before.size());
EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeInt32);
ASSERT_EQ(inputs_before[0].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[0].Shape().size(), 1);
EXPECT_EQ(inputs_before[0].Shape()[0], 1);
// prepare input
std::vector<MSTensor> outputs;
std::vector<MSTensor> inputs;
{
int32_t x = 7;
inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x,
sizeof(int32_t));
}
// infer
ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess);
// assert output
ASSERT_TRUE(outputs.size() == 1);
auto out = outputs[0];
ASSERT_TRUE(out.DataSize() == sizeof(int32_t));
auto out_data = out.Data();
auto p = reinterpret_cast<const int32_t *>(out_data.get());
ASSERT_EQ(*p, 21);
}
TEST_F(TestControl, InferMixedWhileIf) {
auto context = ContextAutoSet();
Graph graph;
ASSERT_TRUE(Serialization::Load(kMixIfWhileFile, ModelType::kMindIR, &graph));
Model control_model;
ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess);
// assert inputs
std::vector<MSTensor> inputs_before = control_model.GetInputs();
ASSERT_EQ(inputs_before.size(), 5);
EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeInt32);
EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeInt32);
EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeInt32);
EXPECT_EQ(inputs_before[3].DataType(), DataType::kNumberTypeInt32);
EXPECT_EQ(inputs_before[4].DataType(), DataType::kNumberTypeInt32);
ASSERT_EQ(inputs_before[0].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[1].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[2].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[3].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[4].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[0].Shape().size(), 1);
EXPECT_EQ(inputs_before[0].Shape()[0], 1);
ASSERT_EQ(inputs_before[1].Shape().size(), 1);
EXPECT_EQ(inputs_before[1].Shape()[0], 1);
ASSERT_EQ(inputs_before[2].Shape().size(), 1);
EXPECT_EQ(inputs_before[2].Shape()[0], 1);
ASSERT_EQ(inputs_before[3].Shape().size(), 1);
EXPECT_EQ(inputs_before[3].Shape()[0], 1);
ASSERT_EQ(inputs_before[4].Shape().size(), 1);
EXPECT_EQ(inputs_before[4].Shape()[0], 1);
// prepare input
std::vector<MSTensor> outputs;
std::vector<MSTensor> inputs;
{
int32_t x = 2, y = 14, z = 1, c2 = 14, c4 = 0;
inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x,
sizeof(int32_t));
inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &y,
sizeof(int32_t));
inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(), &z,
sizeof(int32_t));
inputs.emplace_back(inputs_before[3].Name(), inputs_before[3].DataType(), inputs_before[3].Shape(), &c2,
sizeof(int32_t));
inputs.emplace_back(inputs_before[4].Name(), inputs_before[4].DataType(), inputs_before[4].Shape(), &c4,
sizeof(int32_t));
}
// infer
ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess);
// assert output
ASSERT_TRUE(outputs.size() == 1);
auto out = outputs[0];
ASSERT_TRUE(out.DataSize() == sizeof(int32_t));
auto out_data = out.Data();
auto p = reinterpret_cast<const int32_t *>(out_data.get());
ASSERT_EQ(*p, 350);
}
TEST_F(TestControl, InferSingleFor) {
auto context = ContextAutoSet();
Graph graph;
ASSERT_TRUE(Serialization::Load(kSingleForFile, ModelType::kMindIR, &graph));
Model control_model;
ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess);
// assert inputs
std::vector<MSTensor> inputs_before = control_model.GetInputs();
ASSERT_EQ(inputs_before.size(), 3);
EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeInt32);
EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeInt32);
EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeInt32);
ASSERT_EQ(inputs_before[0].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[1].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[2].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[0].Shape().size(), 1);
EXPECT_EQ(inputs_before[0].Shape()[0], 1);
ASSERT_EQ(inputs_before[1].Shape().size(), 1);
EXPECT_EQ(inputs_before[1].Shape()[0], 1);
ASSERT_EQ(inputs_before[2].Shape().size(), 1);
EXPECT_EQ(inputs_before[2].Shape()[0], 1);
// prepare input
std::vector<MSTensor> outputs;
std::vector<MSTensor> inputs;
{
int32_t x = 2, y = 5, z = 4;
inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x,
sizeof(int32_t));
inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &y,
sizeof(int32_t));
inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(), &z,
sizeof(int32_t));
}
// infer
ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess);
// assert output
ASSERT_TRUE(outputs.size() == 1);
auto out = outputs[0];
ASSERT_TRUE(out.DataSize() == sizeof(int32_t));
auto out_data = out.Data();
auto p = reinterpret_cast<const int32_t *>(out_data.get());
ASSERT_EQ(*p, 125);
}
TEST_F(TestControl, InferSingleOr) {
auto context = ContextAutoSet();
Graph graph;
ASSERT_TRUE(Serialization::Load(kSingleOrFile, ModelType::kMindIR, &graph));
Model control_model;
ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess);
// assert inputs
std::vector<MSTensor> inputs_before = control_model.GetInputs();
ASSERT_EQ(inputs_before.size(), 2);
EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeFloat32);
EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeFloat32);
ASSERT_EQ(inputs_before[0].DataSize(), sizeof(float) * 2);
ASSERT_EQ(inputs_before[1].DataSize(), sizeof(float) * 2);
ASSERT_EQ(inputs_before[0].Shape().size(), 1);
EXPECT_EQ(inputs_before[0].Shape()[0], 2);
ASSERT_EQ(inputs_before[1].Shape().size(), 1);
EXPECT_EQ(inputs_before[1].Shape()[0], 2);
// prepare input
std::vector<MSTensor> outputs;
std::vector<MSTensor> inputs;
{
static const std::vector<float> input_data1 = {0, 1};
static const std::vector<float> input_data2 = {0, 0};
inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(),
input_data1.data(), sizeof(float) * input_data1.size());
inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(),
input_data2.data(), sizeof(int32_t) * input_data2.size());
}
// infer
ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess);
// assert output
ASSERT_TRUE(outputs.size() == 1);
auto out = outputs[0];
ASSERT_TRUE(out.DataSize() == sizeof(float));
auto out_data = out.Data();
auto p = reinterpret_cast<const float *>(out_data.get());
ASSERT_EQ(*p, 1);
}
TEST_F(TestControl, InferSingleSwitch) {
auto context = ContextAutoSet();
Graph graph;
ASSERT_TRUE(Serialization::Load(kSingleSwitchFile, ModelType::kMindIR, &graph));
Model control_model;
ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess);
// assert inputs
std::vector<MSTensor> inputs_before = control_model.GetInputs();
ASSERT_EQ(inputs_before.size(), 3);
EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeFloat32);
EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeInt32);
EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeInt32);
ASSERT_EQ(inputs_before[0].DataSize(), sizeof(float) * 224 * 224);
ASSERT_EQ(inputs_before[1].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[2].DataSize(), sizeof(int32_t));
ASSERT_EQ(inputs_before[0].Shape().size(), 4);
EXPECT_EQ(inputs_before[0].Shape()[0], 1);
EXPECT_EQ(inputs_before[0].Shape()[1], 1);
EXPECT_EQ(inputs_before[0].Shape()[2], 224);
EXPECT_EQ(inputs_before[0].Shape()[3], 224);
ASSERT_EQ(inputs_before[1].Shape().size(), 1);
EXPECT_EQ(inputs_before[1].Shape()[0], 1);
ASSERT_EQ(inputs_before[2].Shape().size(), 1);
EXPECT_EQ(inputs_before[2].Shape()[0], 1);
// prepare input
std::vector<MSTensor> outputs;
std::vector<MSTensor> inputs;
{
static const std::vector<float> input_data1(1 * 1 * 224 * 224, 1);
int32_t index1 = 0;
int32_t index2 = -1;
inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(),
input_data1.data(), sizeof(float) * input_data1.size());
inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &index1,
sizeof(int32_t));
inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(), &index2,
sizeof(int32_t));
}
// infer
ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess);
// assert output
ASSERT_TRUE(outputs.size() == 1);
auto out = outputs[0];
ASSERT_TRUE(out.DataSize() == sizeof(float) * 224 * 224);
auto out_data = out.Data();
auto p = reinterpret_cast<const float *>(out_data.get());
for (size_t i = 0; i < out.DataSize() / sizeof(float); ++i) {
ASSERT_EQ(p[i], 1);
}
}