!12397 fixed the bad links in the retinanet readme file

From: @oacjiewen
Reviewed-by: @liangchenghui,@c_34
Signed-off-by: @liangchenghui
This commit is contained in:
mindspore-ci-bot 2021-02-19 09:22:49 +08:00 committed by Gitee
commit 0042f3e894
1 changed files with 33 additions and 30 deletions

View File

@ -1,9 +1,10 @@
# 1. 内容 # ![logo](https://www.mindspore.cn/static/img/logo_black.6a5c850d.png)
- [1. 内容](#1-内容) <!-- TOC -->
- [2. Retinanet 描述](#2-Retinanet-描述)
- [3. 模型架构](#3-模型架构) - <span id="content">[Retinanet 描述](#Retinanet-描述)</span>
- [4. 数据集](#4-数据集) - [模型架构](#模型架构)
- [数据集](#数据集)
- [环境要求](#环境要求) - [环境要求](#环境要求)
- [脚本说明](#脚本说明) - [脚本说明](#脚本说明)
- [脚本和示例代码](#脚本和示例代码) - [脚本和示例代码](#脚本和示例代码)
@ -13,9 +14,9 @@
- [运行](#运行) - [运行](#运行)
- [结果](#结果) - [结果](#结果)
- [评估过程](#评估过程) - [评估过程](#评估过程)
- [用法](#用法-1) - [用法](#usage)
- [运行](#运行-1) - [运行](#running)
- [结果](#结果-1) - [结果](#outcome)
- [模型说明](#模型说明) - [模型说明](#模型说明)
- [性能](#性能) - [性能](#性能)
- [训练性能](#训练性能) - [训练性能](#训练性能)
@ -23,20 +24,22 @@
- [随机情况的描述](#随机情况的描述) - [随机情况的描述](#随机情况的描述)
- [ModelZoo 主页](#modelzoo-主页) - [ModelZoo 主页](#modelzoo-主页)
# 2. [Retinanet 描述](#内容) <!-- /TOC -->
## [Retinanet 描述](#content)
RetinaNet算法源自2018年Facebook AI Research的论文 Focal Loss for Dense Object Detection。该论文最大的贡献在于提出了Focal Loss用于解决类别不均衡问题从而创造了RetinaNetOne Stage目标检测算法这个精度超越经典Two Stage的Faster-RCNN的目标检测网络。 RetinaNet算法源自2018年Facebook AI Research的论文 Focal Loss for Dense Object Detection。该论文最大的贡献在于提出了Focal Loss用于解决类别不均衡问题从而创造了RetinaNetOne Stage目标检测算法这个精度超越经典Two Stage的Faster-RCNN的目标检测网络。
[论文](https://arxiv.org/pdf/1708.02002.pdf) [论文](https://arxiv.org/pdf/1708.02002.pdf)
Lin T Y , Goyal P , Girshick R , et al. Focal Loss for Dense Object Detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017:2999-3007. Lin T Y , Goyal P , Girshick R , et al. Focal Loss for Dense Object Detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017:2999-3007.
# 3. [模型架构](#内容) ## [模型架构](#content)
Retinanet的整体网络架构如下所示 Retinanet的整体网络架构如下所示
[链接](https://arxiv.org/pdf/1708.02002.pdf) [链接](https://arxiv.org/pdf/1708.02002.pdf)
# 4. [数据集](#内容) ## [数据集](#content)
数据集可参考文献. 数据集可参考文献.
@ -52,7 +55,7 @@ MSCOCO2017
- 注意数据将在src/dataset.py 中被处理 - 注意数据将在src/dataset.py 中被处理
# [环境要求](#内容) ## [环境要求](#content)
- 硬件Ascend - 硬件Ascend
- 使用Ascend处理器准备硬件环境。如果您想使用Ascend请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com。一旦获得批准您就可以获取资源。 - 使用Ascend处理器准备硬件环境。如果您想使用Ascend请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com。一旦获得批准您就可以获取资源。
@ -62,9 +65,9 @@ MSCOCO2017
- [MindSpore 教程](https://www.mindspore.cn/tutorial/training/en/master/index.html) - [MindSpore 教程](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [脚本说明](#内容) ## [脚本说明](#content)
## [脚本和示例代码](#内容) ### [脚本和示例代码](#content)
```shell ```shell
. .
@ -88,7 +91,7 @@ MSCOCO2017
``` ```
## [脚本参数](#内容) ### [脚本参数](#content)
```python ```python
在train.py和config.py脚本中使用到的主要参数是: 在train.py和config.py脚本中使用到的主要参数是:
@ -150,9 +153,9 @@ MSCOCO2017
"checkpoint_path":"/home/hitwh1/1.0/ckpt_0/retinanet-500_458_59.ckpt" # 用于验证的checkpoint路径 "checkpoint_path":"/home/hitwh1/1.0/ckpt_0/retinanet-500_458_59.ckpt" # 用于验证的checkpoint路径
``` ```
## [训练过程](#内容) ### [训练过程](#content)
### 用法 #### 用法
您可以使用python或shell脚本进行训练。shell脚本的用法如下: 您可以使用python或shell脚本进行训练。shell脚本的用法如下:
@ -174,7 +177,7 @@ sh run_distribute_train.sh DEVICE_ID EPOCH_SIZE LR DATASET PRE_TRAINED(optional)
RANK_TABLE_FILE相关参考资料见[链接](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html), 获取device_ip方法详见[链接](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). RANK_TABLE_FILE相关参考资料见[链接](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html), 获取device_ip方法详见[链接](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools).
### 运行 #### 运行
```运行 ```运行
# 训练示例 # 训练示例
@ -198,7 +201,7 @@ sh run_distribute_train.sh DEVICE_ID EPOCH_SIZE LR DATASET PRE_TRAINED(optional)
sh scripts/run_single_train.sh 0 500 0.1 coco /dataset/retinanet-322_458.ckpt 322 sh scripts/run_single_train.sh 0 500 0.1 coco /dataset/retinanet-322_458.ckpt 322
``` ```
### 结果 #### 结果
训练结果将存储在示例路径中。checkpoint将存储在 `./model` 路径下,训练日志将被记录到 `./log.txt` 中,训练日志部分示例如下: 训练结果将存储在示例路径中。checkpoint将存储在 `./model` 路径下,训练日志将被记录到 `./log.txt` 中,训练日志部分示例如下:
@ -217,9 +220,9 @@ lr:[0.000064]
Epoch time: 164531.610, per step time: 359.239 Epoch time: 164531.610, per step time: 359.239
``` ```
## [评估过程](#内容) ### [评估过程](#content)
### 用法 #### <span id="usage">用法</span>
您可以使用python或shell脚本进行训练。shell脚本的用法如下: 您可以使用python或shell脚本进行训练。shell脚本的用法如下:
@ -227,7 +230,7 @@ Epoch time: 164531.610, per step time: 359.239
sh scripts/run_eval.sh [DATASET] [DEVICE_ID] sh scripts/run_eval.sh [DATASET] [DEVICE_ID]
``` ```
### 运行 #### <span id="running">运行</span>
```eval运行 ```eval运行
# 验证示例 # 验证示例
@ -241,7 +244,7 @@ sh scripts/run_eval.sh [DATASET] [DEVICE_ID]
> checkpoint 可以在训练过程中产生. > checkpoint 可以在训练过程中产生.
### 结果 #### <span id="outcome">结果</span>
计算结果将存储在示例路径中,您可以在 `eval.log` 查看. 计算结果将存储在示例路径中,您可以在 `eval.log` 查看.
@ -264,11 +267,11 @@ sh scripts/run_eval.sh [DATASET] [DEVICE_ID]
mAP: 0.34747137754625645 mAP: 0.34747137754625645
``` ```
# [模型说明](#内容) ## [模型说明](#content)
## [性能](#内容) ### [性能](#content)
### 训练性能 #### 训练性能
| 参数 | Ascend | | 参数 | Ascend |
| -------------------------- | ------------------------------------- | | -------------------------- | ------------------------------------- |
@ -284,7 +287,7 @@ mAP: 0.34747137754625645
| 最终损失 | 0.582 | | 最终损失 | 0.582 |
| 精确度 (8p) | mAP[0.3475] | | 精确度 (8p) | mAP[0.3475] |
| 训练总时间 (8p) | 23h16m54s | | 训练总时间 (8p) | 23h16m54s |
| 脚本 | [Retianet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/Retinanet) | | 脚本 | [链接](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/retinanet) |
#### 推理性能 #### 推理性能
@ -299,10 +302,10 @@ mAP: 0.34747137754625645
| 精确度 | mAP[0.3475] | | 精确度 | mAP[0.3475] |
| 总时间 | 10 mins and 50 seconds | | 总时间 | 10 mins and 50 seconds |
# [随机情况的描述](#内容) ## [随机情况的描述](#content)
`dataset.py` 脚本中, 我们在 `create_dataset` 函数中设置了随机种子. 我们在 `train.py` 脚本中也设置了随机种子. `dataset.py` 脚本中, 我们在 `create_dataset` 函数中设置了随机种子. 我们在 `train.py` 脚本中也设置了随机种子.
# [ModelZoo 主页](#内容) ## [ModelZoo 主页](#content)
请核对官方 [主页](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). 请核对官方 [主页](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).