forked from mindspore-Ecosystem/mindspore
100 lines
3.2 KiB
Python
100 lines
3.2 KiB
Python
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# less required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
"""Evaluation for NAML"""
|
||
|
import os
|
||
|
import argparse
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.metrics import roc_auc_score
|
||
|
|
||
|
parser = argparse.ArgumentParser(description="")
|
||
|
parser.add_argument("--result_path", type=str, default="", help="Device id")
|
||
|
parser.add_argument("--label_path", type=str, default="", help="output file name.")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
def AUC(y_true, y_pred):
|
||
|
return roc_auc_score(y_true, y_pred)
|
||
|
|
||
|
def MRR(y_true, y_pred):
|
||
|
index = np.argsort(y_pred)[::-1]
|
||
|
y_true = np.take(y_true, index)
|
||
|
score = y_true / (np.arange(len(y_true)) + 1)
|
||
|
return np.sum(score) / np.sum(y_true)
|
||
|
|
||
|
def DCG(y_true, y_pred, n):
|
||
|
index = np.argsort(y_pred)[::-1]
|
||
|
y_true = np.take(y_true, index[:n])
|
||
|
score = (2 ** y_true - 1) / np.log2(np.arange(len(y_true)) + 2)
|
||
|
return np.sum(score)
|
||
|
|
||
|
def nDCG(y_true, y_pred, n):
|
||
|
return DCG(y_true, y_pred, n) / DCG(y_true, y_true, n)
|
||
|
|
||
|
class NAMLMetric:
|
||
|
"""
|
||
|
Metric method
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
super(NAMLMetric, self).__init__()
|
||
|
self.AUC_list = []
|
||
|
self.MRR_list = []
|
||
|
self.nDCG5_list = []
|
||
|
self.nDCG10_list = []
|
||
|
|
||
|
def clear(self):
|
||
|
"""Clear the internal evaluation result."""
|
||
|
self.AUC_list = []
|
||
|
self.MRR_list = []
|
||
|
self.nDCG5_list = []
|
||
|
self.nDCG10_list = []
|
||
|
|
||
|
def update(self, predict, y_true):
|
||
|
predict = predict.flatten()
|
||
|
y_true = y_true.flatten()
|
||
|
self.AUC_list.append(AUC(y_true, predict))
|
||
|
self.MRR_list.append(MRR(y_true, predict))
|
||
|
self.nDCG5_list.append(nDCG(y_true, predict, 5))
|
||
|
self.nDCG10_list.append(nDCG(y_true, predict, 10))
|
||
|
|
||
|
def eval(self):
|
||
|
auc = np.mean(self.AUC_list)
|
||
|
print('AUC:', auc)
|
||
|
print('MRR:', np.mean(self.MRR_list))
|
||
|
print('nDCG@5:', np.mean(self.nDCG5_list))
|
||
|
print('nDCG@10:', np.mean(self.nDCG10_list))
|
||
|
return auc
|
||
|
|
||
|
def get_metric(result_path, label_path, metric):
|
||
|
"""get accuracy"""
|
||
|
result_files = os.listdir(result_path)
|
||
|
for file in result_files:
|
||
|
result_file = os.path.join(result_path, file)
|
||
|
pred = np.fromfile(result_file, dtype=np.float32)
|
||
|
|
||
|
label_file = os.path.join(label_path, file)
|
||
|
label = np.fromfile(label_file, dtype=np.int32)
|
||
|
|
||
|
if np.nan in pred:
|
||
|
continue
|
||
|
metric.update(pred, label)
|
||
|
|
||
|
auc = metric.eval()
|
||
|
return auc
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
naml_metric = NAMLMetric()
|
||
|
get_metric(args.result_path, args.label_path, naml_metric)
|