forked from mindspore-Ecosystem/mindspore
60 lines
2.5 KiB
Python
60 lines
2.5 KiB
Python
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
"""evaluate_imagenet"""
|
||
|
import argparse
|
||
|
import os
|
||
|
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore import context
|
||
|
from mindspore.train.model import Model
|
||
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||
|
|
||
|
from src.dataset import create_dataset
|
||
|
from src.inceptionv4 import Inceptionv4
|
||
|
from src.config import config_ascend as config
|
||
|
|
||
|
def parse_args():
|
||
|
'''parse_args'''
|
||
|
parser = argparse.ArgumentParser(description='image classification evaluation')
|
||
|
parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
|
||
|
parser.add_argument('--dataset_path', type=str, default='', help='Dataset path')
|
||
|
parser.add_argument('--checkpoint_path', type=str, default='', help='checkpoint of inceptionV4')
|
||
|
args_opt = parser.parse_args()
|
||
|
return args_opt
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
args = parse_args()
|
||
|
|
||
|
if args.platform == 'Ascend':
|
||
|
device_id = int(os.getenv('DEVICE_ID'))
|
||
|
context.set_context(device_id=device_id)
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.platform)
|
||
|
net = Inceptionv4(classes=config.num_classes)
|
||
|
ckpt = load_checkpoint(args.checkpoint_path)
|
||
|
load_param_into_net(net, ckpt)
|
||
|
net.set_train(False)
|
||
|
dataset = create_dataset(dataset_path=args.dataset_path, do_train=False,
|
||
|
repeat_num=1, batch_size=config.batch_size)
|
||
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||
|
eval_metrics = {'Loss': nn.Loss(),
|
||
|
'Top1-Acc': nn.Top1CategoricalAccuracy(),
|
||
|
'Top5-Acc': nn.Top5CategoricalAccuracy()}
|
||
|
model = Model(net, loss, optimizer=None, metrics=eval_metrics)
|
||
|
print('='*20, 'Evalute start', '='*20)
|
||
|
metrics = model.eval(dataset)
|
||
|
print("metric: ", metrics)
|