forked from mindspore-Ecosystem/mindspore
75 lines
3.0 KiB
C++
75 lines
3.0 KiB
C++
|
/**
|
||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
#include <vector>
|
||
|
#include <memory>
|
||
|
#include "common/common_test.h"
|
||
|
#include "ops/grad/pooling_grad.h"
|
||
|
#include "ir/dtype/type.h"
|
||
|
#include "ir/value.h"
|
||
|
#include "abstract/dshape.h"
|
||
|
#include "utils/tensor_construct_utils.h"
|
||
|
|
||
|
namespace mindspore {
|
||
|
namespace ops {
|
||
|
class TestPoolingGrad : public UT::Common {
|
||
|
public:
|
||
|
TestPoolingGrad() {}
|
||
|
void SetUp() {}
|
||
|
void TearDown() {}
|
||
|
};
|
||
|
|
||
|
TEST_F(TestPoolingGrad, test_ops_pooling_grad1) {
|
||
|
auto pooling_grad = std::make_shared<PoolingGrad>();
|
||
|
pooling_grad->Init(MAX_POOLING, std::vector<int64_t>{1, 1}, std::vector<int64_t>{1, 1}, VALID,
|
||
|
std::vector<int64_t>{1, 1, 1, 1}, FLOOR, NCHW, false);
|
||
|
EXPECT_EQ(pooling_grad->get_pool_mode(), MAX_POOLING);
|
||
|
// EXPECT_EQ(pooling_grad->get_window(), std::vector<int64_t>{1, 1});
|
||
|
EXPECT_EQ(pooling_grad->get_pad_mode(), VALID);
|
||
|
// EXPECT_EQ(pooling_grad->get_stride(), std::vector<int64_t>{1, 1});
|
||
|
// EXPECT_EQ(pooling_grad->get_pad_list(), std::vector<int64_t>{1, 1, 1, 1});
|
||
|
EXPECT_EQ(pooling_grad->get_round_mode(), FLOOR);
|
||
|
EXPECT_EQ(pooling_grad->get_format(), NCHW);
|
||
|
EXPECT_EQ(pooling_grad->get_global(), false);
|
||
|
auto input0 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1});
|
||
|
auto input1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1});
|
||
|
auto input2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 3});
|
||
|
MS_EXCEPTION_IF_NULL(input0);
|
||
|
MS_EXCEPTION_IF_NULL(input1);
|
||
|
MS_EXCEPTION_IF_NULL(input2);
|
||
|
auto abstract = pooling_grad->Infer({input0->ToAbstract(), input1->ToAbstract(), input2->ToAbstract()});
|
||
|
MS_EXCEPTION_IF_NULL(abstract);
|
||
|
EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
|
||
|
auto shape_ptr = abstract->BuildShape();
|
||
|
MS_EXCEPTION_IF_NULL(shape_ptr);
|
||
|
EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
|
||
|
auto shape = shape_ptr->cast<abstract::ShapePtr>();
|
||
|
MS_EXCEPTION_IF_NULL(shape);
|
||
|
auto shape_vec = shape->shape();
|
||
|
EXPECT_EQ(shape_vec.size(), 2);
|
||
|
EXPECT_EQ(shape_vec[0], 3);
|
||
|
EXPECT_EQ(shape_vec[1], 3);
|
||
|
auto type = abstract->BuildType();
|
||
|
MS_EXCEPTION_IF_NULL(type);
|
||
|
EXPECT_EQ(type->isa<TensorType>(), true);
|
||
|
auto tensor_type = type->cast<TensorTypePtr>();
|
||
|
MS_EXCEPTION_IF_NULL(tensor_type);
|
||
|
auto data_type = tensor_type->element();
|
||
|
MS_EXCEPTION_IF_NULL(data_type);
|
||
|
EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
|
||
|
}
|
||
|
} // namespace ops
|
||
|
} // namespace mindspore
|