2020-06-19 02:49:21 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
2020-06-17 05:18:41 +08:00
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ==============================================================================
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
2020-05-16 03:26:32 +08:00
|
|
|
import mindspore.dataset as ds
|
|
|
|
import mindspore.dataset.text as text
|
|
|
|
|
|
|
|
# this file contains "home is behind the world head" each word is 1 line
|
|
|
|
DATA_FILE = "../data/dataset/testVocab/words.txt"
|
|
|
|
VOCAB_FILE = "../data/dataset/testVocab/vocab_list.txt"
|
2020-06-17 05:18:41 +08:00
|
|
|
SIMPLE_VOCAB_FILE = "../data/dataset/testVocab/simple_vocab_list.txt"
|
2020-05-16 03:26:32 +08:00
|
|
|
|
|
|
|
|
2020-06-17 05:18:41 +08:00
|
|
|
def test_from_list_tutorial():
|
|
|
|
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", "<unk>"], True)
|
2020-06-22 23:03:47 +08:00
|
|
|
lookup = text.Lookup(vocab, "<unk>")
|
2020-05-16 03:26:32 +08:00
|
|
|
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
|
|
data = data.map(input_columns=["text"], operations=lookup)
|
|
|
|
ind = 0
|
|
|
|
res = [2, 1, 4, 5, 6, 7]
|
|
|
|
for d in data.create_dict_iterator():
|
|
|
|
assert d["text"] == res[ind], ind
|
|
|
|
ind += 1
|
|
|
|
|
|
|
|
|
2020-06-17 05:18:41 +08:00
|
|
|
def test_from_file_tutorial():
|
|
|
|
vocab = text.Vocab.from_file(VOCAB_FILE, ",", None, ["<pad>", "<unk>"], True)
|
2020-05-16 03:26:32 +08:00
|
|
|
lookup = text.Lookup(vocab)
|
|
|
|
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
|
|
data = data.map(input_columns=["text"], operations=lookup)
|
|
|
|
ind = 0
|
|
|
|
res = [10, 11, 12, 15, 13, 14]
|
|
|
|
for d in data.create_dict_iterator():
|
|
|
|
assert d["text"] == res[ind], ind
|
|
|
|
ind += 1
|
|
|
|
|
|
|
|
|
2020-06-17 05:18:41 +08:00
|
|
|
def test_from_dict_tutorial():
|
2020-05-16 03:26:32 +08:00
|
|
|
vocab = text.Vocab.from_dict({"home": 3, "behind": 2, "the": 4, "world": 5, "<unk>": 6})
|
2020-06-22 23:03:47 +08:00
|
|
|
lookup = text.Lookup(vocab, "<unk>") # any unknown token will be mapped to the id of <unk>
|
2020-05-16 03:26:32 +08:00
|
|
|
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
|
|
data = data.map(input_columns=["text"], operations=lookup)
|
|
|
|
res = [3, 6, 2, 4, 5, 6]
|
|
|
|
ind = 0
|
|
|
|
for d in data.create_dict_iterator():
|
|
|
|
assert d["text"] == res[ind], ind
|
|
|
|
ind += 1
|
|
|
|
|
2020-06-17 05:18:41 +08:00
|
|
|
|
|
|
|
def test_from_list():
|
|
|
|
def gen(texts):
|
|
|
|
for word in texts.split(" "):
|
|
|
|
yield (np.array(word, dtype='S'),)
|
|
|
|
|
2020-06-22 23:03:47 +08:00
|
|
|
def test_config(lookup_str, vocab_input, special_tokens, special_first, unknown_token):
|
2020-06-17 05:18:41 +08:00
|
|
|
try:
|
|
|
|
vocab = text.Vocab.from_list(vocab_input, special_tokens, special_first)
|
|
|
|
data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"])
|
2020-06-22 23:03:47 +08:00
|
|
|
data = data.map(input_columns=["text"], operations=text.Lookup(vocab, unknown_token))
|
2020-06-17 05:18:41 +08:00
|
|
|
res = []
|
|
|
|
for d in data.create_dict_iterator():
|
|
|
|
res.append(d["text"].item())
|
|
|
|
return res
|
|
|
|
except ValueError as e:
|
|
|
|
return str(e)
|
2020-06-22 23:03:47 +08:00
|
|
|
except RuntimeError as e:
|
|
|
|
return str(e)
|
|
|
|
except TypeError as e:
|
|
|
|
return str(e)
|
2020-06-17 05:18:41 +08:00
|
|
|
|
|
|
|
# test normal operations
|
2020-06-22 23:03:47 +08:00
|
|
|
assert test_config("w1 w2 w3 s1 s2 ephemeral", ["w1", "w2", "w3"], ["s1", "s2"], True, "s2") == [2, 3, 4, 0, 1, 1]
|
|
|
|
assert test_config("w1 w2 w3 s1 s2", ["w1", "w2", "w3"], ["s1", "s2"], False, "s2") == [0, 1, 2, 3, 4]
|
|
|
|
assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, True, "w1") == [2, 1, 0]
|
|
|
|
assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, False, "w1") == [2, 1, 0]
|
|
|
|
# test unknown token lookup
|
|
|
|
assert test_config("w1 un1 w3 un2", ["w1", "w2", "w3"], ["<pad>", "<unk>"], True, "<unk>") == [2, 1, 4, 1]
|
|
|
|
assert test_config("w1 un1 w3 un2", ["w1", "w2", "w3"], ["<pad>", "<unk>"], False, "<unk>") == [0, 4, 2, 4]
|
2020-06-17 05:18:41 +08:00
|
|
|
|
|
|
|
# test exceptions
|
2020-06-22 23:03:47 +08:00
|
|
|
assert "doesn't exist in vocab." in test_config("un1", ["w1"], [], False, "unk")
|
|
|
|
assert "doesn't exist in vocab and no unknown token is specified." in test_config("un1", ["w1"], [], False, None)
|
|
|
|
assert "doesn't exist in vocab" in test_config("un1", ["w1"], [], False, None)
|
|
|
|
assert "word_list contains duplicate" in test_config("w1", ["w1", "w1"], [], True, "w1")
|
|
|
|
assert "special_tokens contains duplicate" in test_config("w1", ["w1", "w2"], ["s1", "s1"], True, "w1")
|
|
|
|
assert "special_tokens and word_list contain duplicate" in test_config("w1", ["w1", "w2"], ["s1", "w1"], True, "w1")
|
|
|
|
assert "is not of type" in test_config("w1", ["w1", "w2"], ["s1"], True, 123)
|
2020-06-17 05:18:41 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_from_file():
|
|
|
|
def gen(texts):
|
|
|
|
for word in texts.split(" "):
|
|
|
|
yield (np.array(word, dtype='S'),)
|
|
|
|
|
2020-06-19 02:49:21 +08:00
|
|
|
def test_config(lookup_str, vocab_size, special_tokens, special_first):
|
2020-06-17 05:18:41 +08:00
|
|
|
try:
|
2020-06-19 02:49:21 +08:00
|
|
|
vocab = text.Vocab.from_file(SIMPLE_VOCAB_FILE, vocab_size=vocab_size, special_tokens=special_tokens,
|
|
|
|
special_first=special_first)
|
2020-06-17 05:18:41 +08:00
|
|
|
data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"])
|
2020-06-22 23:03:47 +08:00
|
|
|
data = data.map(input_columns=["text"], operations=text.Lookup(vocab, "s2"))
|
2020-06-17 05:18:41 +08:00
|
|
|
res = []
|
|
|
|
for d in data.create_dict_iterator():
|
|
|
|
res.append(d["text"].item())
|
|
|
|
return res
|
|
|
|
except ValueError as e:
|
|
|
|
return str(e)
|
|
|
|
|
2020-06-19 02:49:21 +08:00
|
|
|
# test special tokens are prepended
|
|
|
|
assert test_config("w1 w2 w3 s1 s2 s3", None, ["s1", "s2", "s3"], True) == [3, 4, 5, 0, 1, 2]
|
|
|
|
# test special tokens are appended
|
|
|
|
assert test_config("w1 w2 w3 s1 s2 s3", None, ["s1", "s2", "s3"], False) == [0, 1, 2, 8, 9, 10]
|
|
|
|
# test special tokens are prepended when not all words in file are used
|
|
|
|
assert test_config("w1 w2 w3 s1 s2 s3", 3, ["s1", "s2", "s3"], False) == [0, 1, 2, 3, 4, 5]
|
|
|
|
# text exception special_words contains duplicate words
|
|
|
|
assert "special_tokens contains duplicate" in test_config("w1", None, ["s1", "s1"], True)
|
2020-06-17 05:18:41 +08:00
|
|
|
|
|
|
|
|
2020-05-16 03:26:32 +08:00
|
|
|
if __name__ == '__main__':
|
2020-06-17 05:18:41 +08:00
|
|
|
test_from_list_tutorial()
|
|
|
|
test_from_file_tutorial()
|
|
|
|
test_from_dict_tutorial()
|
2020-05-16 03:26:32 +08:00
|
|
|
test_from_list()
|
|
|
|
test_from_file()
|