mindspore/tests/ut/python/parallel/test_parallel_optimizer.py

115 lines
4.3 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test adam """
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Adam, AdamWeightDecay, AdamWeightDecayDynamicLR, Lamb
from mindspore.ops import operations as P
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore import context
class Net(nn.Cell):
"""Net definition"""
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Dense(128, 768, activation='relu')
self.fc2 = nn.Dense(128, 768, activation='relu')
self.fc3 = nn.Dense(128, 768, activation='relu')
self.fc4 = nn.Dense(768, 768, activation='relu')
self.relu4 = nn.ReLU()
self.relu5 = nn.ReLU()
self.transpose = P.Transpose()
self.matmul1 = P.MatMul()
self.matmul2 = P.MatMul()
def construct(self, x):
q = self.fc1(x)
k = self.fc2(x)
v = self.fc3(x)
k = self.transpose(k, (1, 0))
c = self.relu4(self.matmul1(q, k))
s = self.relu5(self.matmul2(c, v))
s = self.fc4(s)
return s
def test_AdamWeightDecayDynamicLR():
""" test_AdamWeightDecayDynamicLR """
auto_parallel_context().set_enable_parallel_optimizer(True)
context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2)
inputs = Tensor(np.ones([32, 128]).astype(np.float32))
label = Tensor(np.zeros([32, 768]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = AdamWeightDecayDynamicLR(net.trainable_params(), decay_steps=20, learning_rate=0.1)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_AdamWeightDecay():
""" test_AdamWeightDecayDynamicLR """
auto_parallel_context().set_enable_parallel_optimizer(True)
context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2)
inputs = Tensor(np.ones([32, 128]).astype(np.float32))
label = Tensor(np.zeros([32, 768]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = AdamWeightDecay(net.trainable_params(), learning_rate=0.1)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_lamb_compile():
""" test_Lamb_compile """
auto_parallel_context().set_enable_parallel_optimizer(True)
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=2)
inputs = Tensor(np.ones([32, 128]).astype(np.float32))
label = Tensor(np.zeros([32, 768]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Lamb(net.trainable_params(), decay_steps=10)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_edge_case():
""" test_edge_case """
auto_parallel_context().set_enable_parallel_optimizer(True)
net = Net()
with pytest.raises(RuntimeError):
context.set_auto_parallel_context(parallel_mode="stand_alone")
Lamb(net.trainable_params(), decay_steps=10)
with pytest.raises(RuntimeError):
Adam(net.trainable_params(), learning_rate=0.1)
with pytest.raises(RuntimeError):
context.set_auto_parallel_context(device_num=16)
Lamb(net.trainable_params(), decay_steps=10)