2020-08-17 20:11:09 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import mindspore.context as context
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
from mindspore.communication.management import init, get_rank, get_group_size
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
|
|
|
|
2020-08-27 15:11:02 +08:00
|
|
|
init()
|
2020-08-17 20:11:09 +08:00
|
|
|
rank = get_rank()
|
|
|
|
size = get_group_size()
|
|
|
|
x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.x1 = Parameter(initializer(Tensor(x), x.shape), name='x1')
|
|
|
|
self.x2 = Parameter(initializer(Tensor(x), x.shape), name='x2')
|
|
|
|
self.x3 = Parameter(initializer(Tensor(x), x.shape), name='x3')
|
|
|
|
|
|
|
|
self.broadcast1 = P.Broadcast(0)
|
|
|
|
self.broadcast2 = P.Broadcast(1)
|
|
|
|
self.broadcast3 = P.Broadcast(2)
|
|
|
|
|
|
|
|
def construct(self):
|
|
|
|
return (self.broadcast1((self.x1,)),
|
|
|
|
self.broadcast2((self.x2,)),
|
|
|
|
self.broadcast3((self.x3,)))
|
|
|
|
|
|
|
|
|
|
|
|
def test_Broadcast():
|
|
|
|
broadcast = Net()
|
|
|
|
output = broadcast()
|
|
|
|
|
|
|
|
expect0 = np.ones([3, 1, 3, 3]).astype(np.float32) * 1
|
|
|
|
expect1 = np.ones([3, 1, 3, 3]).astype(np.float32) * 2
|
|
|
|
expect2 = np.ones([3, 1, 3, 3]).astype(np.float32) * 3
|
|
|
|
|
|
|
|
diff0 = output[0][0].asnumpy() - expect0
|
|
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
|
|
|
assert np.all(diff0 < error0)
|
|
|
|
assert output[0][0].shape == expect0.shape
|
|
|
|
|
|
|
|
diff1 = output[1][0].asnumpy() - expect1
|
|
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
|
|
|
assert np.all(diff1 < error1)
|
|
|
|
assert output[1][0].shape == expect1.shape
|
|
|
|
|
|
|
|
diff2 = output[2][0].asnumpy() - expect2
|
|
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
|
|
|
assert np.all(diff2 < error2)
|
|
|
|
assert output[2][0].shape == expect2.shape
|