mindspore/tests/st/nccl/test_nccl_broadcast_op.py

72 lines
2.6 KiB
Python
Raw Normal View History

2020-08-17 20:11:09 +08:00
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
2020-08-27 15:11:02 +08:00
init()
2020-08-17 20:11:09 +08:00
rank = get_rank()
size = get_group_size()
x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.x1 = Parameter(initializer(Tensor(x), x.shape), name='x1')
self.x2 = Parameter(initializer(Tensor(x), x.shape), name='x2')
self.x3 = Parameter(initializer(Tensor(x), x.shape), name='x3')
self.broadcast1 = P.Broadcast(0)
self.broadcast2 = P.Broadcast(1)
self.broadcast3 = P.Broadcast(2)
def construct(self):
return (self.broadcast1((self.x1,)),
self.broadcast2((self.x2,)),
self.broadcast3((self.x3,)))
def test_Broadcast():
broadcast = Net()
output = broadcast()
expect0 = np.ones([3, 1, 3, 3]).astype(np.float32) * 1
expect1 = np.ones([3, 1, 3, 3]).astype(np.float32) * 2
expect2 = np.ones([3, 1, 3, 3]).astype(np.float32) * 3
diff0 = output[0][0].asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0)
assert output[0][0].shape == expect0.shape
diff1 = output[1][0].asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert output[1][0].shape == expect1.shape
diff2 = output[2][0].asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2)
assert output[2][0].shape == expect2.shape