2020-10-29 15:54:18 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""
|
|
|
|
Train centerface and get network model files(.ckpt)
|
|
|
|
"""
|
|
|
|
|
|
|
|
import os
|
|
|
|
import time
|
|
|
|
import argparse
|
|
|
|
import datetime
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from mindspore import context
|
|
|
|
from mindspore.context import ParallelMode
|
|
|
|
from mindspore.nn.optim.adam import Adam
|
|
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
|
|
from mindspore.nn.optim.sgd import SGD
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore.communication.management import init, get_rank, get_group_size
|
|
|
|
from mindspore.train.callback import ModelCheckpoint, RunContext
|
2021-06-01 14:43:07 +08:00
|
|
|
from mindspore.train.callback import CheckpointConfig
|
2020-10-29 15:54:18 +08:00
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
from mindspore.profiler.profiling import Profiler
|
2021-01-27 15:29:57 +08:00
|
|
|
from mindspore.common import set_seed
|
2020-10-29 15:54:18 +08:00
|
|
|
|
|
|
|
from src.utils import get_logger
|
|
|
|
from src.utils import AverageMeter
|
|
|
|
from src.lr_scheduler import warmup_step_lr
|
|
|
|
from src.lr_scheduler import warmup_cosine_annealing_lr, \
|
|
|
|
warmup_cosine_annealing_lr_v2, warmup_cosine_annealing_lr_sample
|
|
|
|
from src.lr_scheduler import MultiStepLR
|
|
|
|
from src.var_init import default_recurisive_init
|
|
|
|
from src.centerface import CenterfaceMobilev2
|
|
|
|
from src.utils import load_backbone, get_param_groups
|
|
|
|
from src.config import ConfigCenterface
|
|
|
|
from src.centerface import CenterFaceWithLossCell, TrainingWrapper
|
|
|
|
from src.dataset import GetDataLoader
|
|
|
|
|
2021-01-27 15:29:57 +08:00
|
|
|
set_seed(1)
|
2020-10-29 15:54:18 +08:00
|
|
|
dev_id = int(os.getenv('DEVICE_ID'))
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=False,
|
|
|
|
device_target="Ascend", save_graphs=False, device_id=dev_id, reserve_class_name_in_scope=False)
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser('mindspore coco training')
|
|
|
|
|
|
|
|
# dataset related
|
|
|
|
parser.add_argument('--data_dir', type=str, default='', help='train data dir')
|
|
|
|
parser.add_argument('--annot_path', type=str, default='', help='train data annotation path')
|
|
|
|
parser.add_argument('--img_dir', type=str, default='', help='train data img dir')
|
|
|
|
parser.add_argument('--per_batch_size', default=8, type=int, help='batch size for per gpu')
|
|
|
|
|
|
|
|
# network related
|
|
|
|
parser.add_argument('--pretrained_backbone', default='', type=str, help='model_path, local pretrained backbone'
|
|
|
|
' model to load')
|
|
|
|
parser.add_argument('--resume', default='', type=str, help='path of pretrained centerface_model')
|
|
|
|
|
|
|
|
# optimizer and lr related
|
|
|
|
parser.add_argument('--lr_scheduler', default='multistep', type=str,
|
|
|
|
help='lr-scheduler, option type: exponential, cosine_annealing')
|
|
|
|
parser.add_argument('--lr', default=4e-3, type=float, help='learning rate of the training')
|
|
|
|
parser.add_argument('--lr_epochs', type=str, default='90,120', help='epoch of lr changing')
|
|
|
|
parser.add_argument('--lr_gamma', type=float, default=0.1,
|
|
|
|
help='decrease lr by a factor of exponential lr_scheduler')
|
|
|
|
parser.add_argument('--eta_min', type=float, default=0., help='eta_min in cosine_annealing scheduler')
|
|
|
|
parser.add_argument('--t_max', type=int, default=140, help='T-max in cosine_annealing scheduler')
|
|
|
|
parser.add_argument('--max_epoch', type=int, default=140, help='max epoch num to train the model')
|
|
|
|
parser.add_argument('--warmup_epochs', default=0, type=float, help='warmup epoch')
|
|
|
|
parser.add_argument('--weight_decay', type=float, default=0.0005, help='weight decay')
|
|
|
|
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
|
|
|
|
parser.add_argument('--optimizer', default='adam', type=str,
|
|
|
|
help='optimizer type, default: adam')
|
|
|
|
|
|
|
|
# loss related
|
|
|
|
parser.add_argument('--loss_scale', type=int, default=1024, help='static loss scale')
|
|
|
|
parser.add_argument('--label_smooth', type=int, default=0, help='whether to use label smooth in CE')
|
|
|
|
parser.add_argument('--label_smooth_factor', type=float, default=0.1, help='smooth strength of original one-hot')
|
|
|
|
|
|
|
|
# logging related
|
|
|
|
parser.add_argument('--log_interval', type=int, default=100, help='logging interval')
|
|
|
|
parser.add_argument('--ckpt_path', type=str, default='outputs/', help='checkpoint save location')
|
|
|
|
parser.add_argument('--ckpt_interval', type=int, default=None, help='ckpt_interval')
|
|
|
|
|
|
|
|
parser.add_argument('--is_save_on_master', type=int, default=1, help='save ckpt on master or all rank')
|
|
|
|
|
|
|
|
# distributed related
|
|
|
|
parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
|
|
|
|
parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
|
|
|
|
parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
|
|
|
|
|
|
|
|
# roma obs
|
|
|
|
parser.add_argument('--train_url', type=str, default="", help='train url')
|
|
|
|
|
|
|
|
# profiler init, can open when you debug. if train, donot open, since it cost memory and disk space
|
|
|
|
parser.add_argument('--need_profiler', type=int, default=0, help='whether use profiler')
|
|
|
|
|
|
|
|
# reset default config
|
|
|
|
parser.add_argument('--training_shape', type=str, default="", help='fix training shape')
|
|
|
|
parser.add_argument('--resize_rate', type=int, default=None, help='resize rate for multi-scale training')
|
|
|
|
|
|
|
|
args, _ = parser.parse_known_args()
|
|
|
|
|
|
|
|
if args.lr_scheduler == 'cosine_annealing' and args.max_epoch > args.t_max:
|
|
|
|
args.t_max = args.max_epoch
|
|
|
|
|
|
|
|
args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
|
|
|
|
|
|
|
|
|
|
|
|
def convert_training_shape(args_):
|
|
|
|
"""
|
|
|
|
Convert training shape
|
|
|
|
"""
|
|
|
|
training_shape = [int(args_.training_shape), int(args_.training_shape)]
|
|
|
|
return training_shape
|
|
|
|
|
|
|
|
|
2021-06-01 14:43:07 +08:00
|
|
|
class InternalCallbackParam(dict):
|
|
|
|
"""Internal callback object's parameters."""
|
|
|
|
|
|
|
|
def __getattr__(self, para_name):
|
|
|
|
return self[para_name]
|
|
|
|
|
|
|
|
def __setattr__(self, para_name, para_value):
|
|
|
|
self[para_name] = para_value
|
|
|
|
|
|
|
|
|
2020-10-29 15:54:18 +08:00
|
|
|
if __name__ == "__main__":
|
|
|
|
# init distributed
|
|
|
|
if args.is_distributed:
|
|
|
|
init()
|
|
|
|
args.rank = get_rank()
|
|
|
|
args.group_size = get_group_size()
|
|
|
|
|
2021-01-27 15:29:57 +08:00
|
|
|
# select for master rank save ckpt or all rank save, compatible for model parallel
|
2020-10-29 15:54:18 +08:00
|
|
|
args.rank_save_ckpt_flag = 0
|
|
|
|
if args.is_save_on_master:
|
|
|
|
if args.rank == 0:
|
|
|
|
args.rank_save_ckpt_flag = 1
|
|
|
|
else:
|
|
|
|
args.rank_save_ckpt_flag = 1
|
|
|
|
|
|
|
|
# logger
|
|
|
|
args.outputs_dir = os.path.join(args.ckpt_path,
|
|
|
|
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
|
|
|
|
args.logger = get_logger(args.outputs_dir, args.rank)
|
|
|
|
args.logger.save_args(args)
|
|
|
|
|
|
|
|
if args.need_profiler:
|
|
|
|
profiler = Profiler(output_path=args.outputs_dir)
|
|
|
|
|
|
|
|
loss_meter = AverageMeter('loss')
|
|
|
|
|
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
if args.is_distributed:
|
|
|
|
parallel_mode = ParallelMode.DATA_PARALLEL
|
|
|
|
degree = get_group_size()
|
|
|
|
else:
|
|
|
|
parallel_mode = ParallelMode.STAND_ALONE
|
|
|
|
degree = 1
|
|
|
|
|
|
|
|
# Notice: parameter_broadcast should be supported, but current version has bugs, thus been disabled.
|
|
|
|
# To make sure the init weight on all npu is the same, we need to set a static seed in default_recurisive_init when weight initialization
|
|
|
|
context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=degree)
|
|
|
|
network = CenterfaceMobilev2()
|
|
|
|
# init, to avoid overflow, some std of weight should be enough small
|
|
|
|
default_recurisive_init(network)
|
|
|
|
|
|
|
|
if args.pretrained_backbone:
|
|
|
|
network = load_backbone(network, args.pretrained_backbone, args)
|
|
|
|
args.logger.info('load pre-trained backbone {} into network'.format(args.pretrained_backbone))
|
|
|
|
else:
|
|
|
|
args.logger.info('Not load pre-trained backbone, please be careful')
|
|
|
|
|
|
|
|
if os.path.isfile(args.resume):
|
|
|
|
param_dict = load_checkpoint(args.resume)
|
|
|
|
param_dict_new = {}
|
|
|
|
for key, values in param_dict.items():
|
|
|
|
if key.startswith('moments.') or key.startswith('moment1.') or key.startswith('moment2.'):
|
|
|
|
continue
|
|
|
|
elif key.startswith('centerface_network.'):
|
|
|
|
param_dict_new[key[19:]] = values
|
|
|
|
else:
|
|
|
|
param_dict_new[key] = values
|
|
|
|
|
|
|
|
load_param_into_net(network, param_dict_new)
|
|
|
|
args.logger.info('load_model {} success'.format(args.resume))
|
|
|
|
else:
|
|
|
|
args.logger.info('{} not set/exists or not a pre-trained file'.format(args.resume))
|
|
|
|
|
|
|
|
network = CenterFaceWithLossCell(network)
|
|
|
|
args.logger.info('finish get network')
|
|
|
|
|
|
|
|
config = ConfigCenterface()
|
|
|
|
config.data_dir = args.data_dir
|
|
|
|
config.annot_path = args.annot_path
|
|
|
|
config.img_dir = args.img_dir
|
|
|
|
|
|
|
|
config.label_smooth = args.label_smooth
|
|
|
|
config.label_smooth_factor = args.label_smooth_factor
|
|
|
|
# -------------reset config-----------------
|
|
|
|
if args.training_shape:
|
|
|
|
config.multi_scale = [convert_training_shape(args)]
|
|
|
|
|
|
|
|
if args.resize_rate:
|
|
|
|
config.resize_rate = args.resize_rate
|
|
|
|
|
|
|
|
# data loader
|
|
|
|
data_loader, args.steps_per_epoch = GetDataLoader(per_batch_size=args.per_batch_size,
|
|
|
|
max_epoch=args.max_epoch,
|
|
|
|
rank=args.rank,
|
|
|
|
group_size=args.group_size,
|
|
|
|
config=config,
|
|
|
|
split='train')
|
|
|
|
args.steps_per_epoch = args.steps_per_epoch // args.max_epoch
|
|
|
|
args.logger.info('Finish loading dataset')
|
|
|
|
|
|
|
|
if not args.ckpt_interval:
|
|
|
|
args.ckpt_interval = args.steps_per_epoch
|
|
|
|
|
|
|
|
# lr scheduler
|
|
|
|
if args.lr_scheduler == 'multistep':
|
|
|
|
lr_fun = MultiStepLR(args.lr, args.lr_epochs, args.lr_gamma, args.steps_per_epoch, args.max_epoch,
|
|
|
|
args.warmup_epochs)
|
|
|
|
lr = lr_fun.get_lr()
|
|
|
|
elif args.lr_scheduler == 'exponential':
|
|
|
|
lr = warmup_step_lr(args.lr,
|
|
|
|
args.lr_epochs,
|
|
|
|
args.steps_per_epoch,
|
|
|
|
args.warmup_epochs,
|
|
|
|
args.max_epoch,
|
|
|
|
gamma=args.lr_gamma
|
|
|
|
)
|
|
|
|
elif args.lr_scheduler == 'cosine_annealing':
|
|
|
|
lr = warmup_cosine_annealing_lr(args.lr,
|
|
|
|
args.steps_per_epoch,
|
|
|
|
args.warmup_epochs,
|
|
|
|
args.max_epoch,
|
|
|
|
args.t_max,
|
|
|
|
args.eta_min)
|
|
|
|
elif args.lr_scheduler == 'cosine_annealing_V2':
|
|
|
|
lr = warmup_cosine_annealing_lr_v2(args.lr,
|
|
|
|
args.steps_per_epoch,
|
|
|
|
args.warmup_epochs,
|
|
|
|
args.max_epoch,
|
|
|
|
args.t_max,
|
|
|
|
args.eta_min)
|
|
|
|
elif args.lr_scheduler == 'cosine_annealing_sample':
|
|
|
|
lr = warmup_cosine_annealing_lr_sample(args.lr,
|
|
|
|
args.steps_per_epoch,
|
|
|
|
args.warmup_epochs,
|
|
|
|
args.max_epoch,
|
|
|
|
args.t_max,
|
|
|
|
args.eta_min)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError(args.lr_scheduler)
|
|
|
|
|
|
|
|
if args.optimizer == "adam":
|
|
|
|
opt = Adam(params=get_param_groups(network),
|
|
|
|
learning_rate=Tensor(lr),
|
|
|
|
weight_decay=args.weight_decay,
|
|
|
|
loss_scale=args.loss_scale)
|
|
|
|
args.logger.info("use adam optimizer")
|
|
|
|
elif args.optimizer == "sgd":
|
|
|
|
opt = SGD(params=get_param_groups(network),
|
|
|
|
learning_rate=Tensor(lr),
|
|
|
|
momentum=args.momentum,
|
|
|
|
weight_decay=args.weight_decay,
|
|
|
|
loss_scale=args.loss_scale)
|
|
|
|
else:
|
|
|
|
opt = Momentum(params=get_param_groups(network),
|
|
|
|
learning_rate=Tensor(lr),
|
|
|
|
momentum=args.momentum,
|
|
|
|
weight_decay=args.weight_decay,
|
|
|
|
loss_scale=args.loss_scale)
|
|
|
|
|
|
|
|
network = TrainingWrapper(network, opt, sens=args.loss_scale)
|
|
|
|
network.set_train()
|
|
|
|
|
|
|
|
if args.rank_save_ckpt_flag:
|
|
|
|
# checkpoint save
|
|
|
|
ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
|
|
|
|
ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval,
|
|
|
|
keep_checkpoint_max=ckpt_max_num)
|
|
|
|
ckpt_cb = ModelCheckpoint(config=ckpt_config,
|
|
|
|
directory=args.outputs_dir,
|
|
|
|
prefix='{}'.format(args.rank))
|
2021-06-01 14:43:07 +08:00
|
|
|
cb_params = InternalCallbackParam()
|
2020-10-29 15:54:18 +08:00
|
|
|
cb_params.train_network = network
|
|
|
|
cb_params.epoch_num = ckpt_max_num
|
|
|
|
cb_params.cur_epoch_num = 1
|
|
|
|
run_context = RunContext(cb_params)
|
|
|
|
ckpt_cb.begin(run_context)
|
|
|
|
|
|
|
|
args.logger.info('args.steps_per_epoch = {} args.ckpt_interval ={}'.format(args.steps_per_epoch,
|
|
|
|
args.ckpt_interval))
|
|
|
|
|
|
|
|
t_end = time.time()
|
|
|
|
|
|
|
|
for i_all, batch_load in enumerate(data_loader):
|
|
|
|
i = i_all % args.steps_per_epoch
|
|
|
|
epoch = i_all // args.steps_per_epoch + 1
|
|
|
|
images, hm, reg_mask, ind, wh, wight_mask, hm_offset, hps_mask, landmarks = batch_load
|
|
|
|
|
|
|
|
images = Tensor(images)
|
|
|
|
hm = Tensor(hm)
|
|
|
|
reg_mask = Tensor(reg_mask)
|
|
|
|
ind = Tensor(ind)
|
|
|
|
wh = Tensor(wh)
|
|
|
|
wight_mask = Tensor(wight_mask)
|
|
|
|
hm_offset = Tensor(hm_offset)
|
|
|
|
hps_mask = Tensor(hps_mask)
|
|
|
|
landmarks = Tensor(landmarks)
|
|
|
|
|
|
|
|
loss, overflow, scaling = network(images, hm, reg_mask, ind, wh, wight_mask, hm_offset, hps_mask, landmarks)
|
|
|
|
# Tensor to numpy
|
|
|
|
overflow = np.all(overflow.asnumpy())
|
|
|
|
loss = loss.asnumpy()
|
|
|
|
loss_meter.update(loss)
|
|
|
|
args.logger.info('epoch:{}, iter:{}, avg_loss:{}, loss:{}, overflow:{}, loss_scale:{}'.format(epoch,
|
|
|
|
i,
|
|
|
|
loss_meter,
|
|
|
|
loss,
|
|
|
|
overflow,
|
|
|
|
scaling.asnumpy()
|
|
|
|
))
|
|
|
|
|
|
|
|
if args.rank_save_ckpt_flag:
|
|
|
|
# ckpt progress
|
|
|
|
cb_params.cur_epoch_num = epoch
|
|
|
|
cb_params.cur_step_num = i + 1 + (epoch-1)*args.steps_per_epoch
|
|
|
|
cb_params.batch_num = i + 2 + (epoch-1)*args.steps_per_epoch
|
|
|
|
ckpt_cb.step_end(run_context)
|
|
|
|
|
|
|
|
if (i_all+1) % args.steps_per_epoch == 0:
|
|
|
|
time_used = time.time() - t_end
|
|
|
|
fps = args.per_batch_size * args.steps_per_epoch * args.group_size / time_used
|
|
|
|
if args.rank == 0:
|
|
|
|
args.logger.info(
|
|
|
|
'epoch[{}], {}, {:.2f} imgs/sec, lr:{}'
|
|
|
|
.format(epoch, loss_meter, fps, lr[i + (epoch-1)*args.steps_per_epoch])
|
|
|
|
)
|
|
|
|
t_end = time.time()
|
|
|
|
loss_meter.reset()
|
|
|
|
|
|
|
|
if args.need_profiler:
|
|
|
|
profiler.analyse()
|
|
|
|
|
|
|
|
args.logger.info('==========end training===============')
|