mindspore/tests/st/auto_parallel/parallel_strategy_search.py

384 lines
17 KiB
Python
Raw Normal View History

2020-11-24 20:18:23 +08:00
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import numpy as np
from mindspore.communication.management import init
from mindspore.communication.management import release
from mindspore.communication.management import get_rank
from mindspore.communication.management import get_group_size
from mindspore.nn import Cell
from mindspore.nn import Conv2d
from mindspore.nn import ReLU
from mindspore.nn import Dense
from mindspore.nn import Softmax
import mindspore.ops.operations as P
from mindspore.train.serialization import load_param_into_net
from mindspore.train.callback import CheckpointConfig
from mindspore.train.callback import ModelCheckpoint
from mindspore.train.serialization import load_checkpoint
from mindspore.nn import Momentum
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.train import Model
from mindspore.parallel import set_algo_parameters
from mindspore.common.initializer import initializer
from mindspore.common import dtype as mstype
from mindspore import Tensor
from mindspore.common.parameter import Parameter
from mindspore import context
from mindspore.context import ParallelMode
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
def _count_unequal_element(data_expected, data_me, rtol, atol):
assert data_expected.shape == data_me.shape
total_count = len(data_expected.flatten())
error = np.abs(data_expected - data_me)
greater = np.greater(error, atol + np.abs(data_me) * rtol)
loss_count = np.count_nonzero(greater)
assert (loss_count / total_count) < rtol, \
"\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
format(data_expected[greater], data_me[greater], error[greater])
def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
if np.any(np.isnan(data_expected)):
assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan)
elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan):
_count_unequal_element(data_expected, data_me, rtol, atol)
else:
assert True
def clean_all_ckpt_files(folder_path):
if os.path.exists(folder_path):
for file_name in os.listdir(folder_path):
if file_name.endswith('.ckpt') or file_name.endswith('.meta'):
os.remove(os.path.join(folder_path, file_name))
def find_newest_ckpt_file(folder_path):
ckpt_files = map(lambda f: os.path.join(folder_path, f),
filter(lambda f: f.endswith('.ckpt'),
os.listdir(folder_path)))
return max(ckpt_files, key=os.path.getctime)
class FakeDataInitMode:
RandomInit = 0
OnesInit = 1
UniqueInit = 2
ZerosInit = 3
class FakeData:
def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224),
num_classes=10, random_offset=0, use_parallel=False,
fakedata_mode=FakeDataInitMode.RandomInit):
self.size = size
self.rank_batch_size = batch_size
self.total_batch_size = self.rank_batch_size
self.random_offset = random_offset
self.image_size = image_size
self.num_classes = num_classes
self.rank_size = 1
self.rank_id = 0
self.batch_index = 0
self.image_data_type = np.float32
self.label_data_type = np.float32
self.is_onehot = True
self.fakedata_mode = fakedata_mode
if use_parallel is True:
init(backend_name='hccl')
self.rank_size = get_group_size()
self.rank_id = get_rank()
self.total_batch_size = self.rank_batch_size * self.rank_size
assert (self.size % self.total_batch_size) == 0
self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
def get_dataset_size(self):
return int(self.size / self.total_batch_size)
def get_repeat_count(self):
return 1
def set_image_data_type(self, data_type):
self.image_data_type = data_type
def set_label_data_type(self, data_type):
self.label_data_type = data_type
def set_label_onehot(self, is_onehot=True):
self.is_onehot = is_onehot
2020-12-20 15:47:58 +08:00
def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
2020-11-24 20:18:23 +08:00
_ = num_epochs
return self
def __getitem__(self, batch_index):
if batch_index * self.total_batch_size >= len(self):
raise IndexError("{} index out of range".format(self.__class__.__name__))
rng_state = np.random.get_state()
np.random.seed(batch_index + self.random_offset)
if self.fakedata_mode == FakeDataInitMode.OnesInit:
img = np.ones(self.total_batch_data_size)
elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
img = np.zeros(self.total_batch_data_size)
elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
total_size = 1
for i in self.total_batch_data_size:
total_size = total_size * i
img = np.reshape(np.arange(total_size) * 0.0001, self.total_batch_data_size)
else:
img = np.random.randn(*self.total_batch_data_size)
target = np.random.randint(0, self.num_classes, size=(self.rank_size, self.rank_batch_size))
np.random.set_state(rng_state)
img = img[self.rank_id]
target = target[self.rank_id]
img_ret = img.astype(self.image_data_type)
target_ret = target.astype(self.label_data_type)
if self.is_onehot:
target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_classes))
target_onehot[np.arange(self.rank_batch_size), target] = 1
target_ret = target_onehot.astype(self.label_data_type)
return Tensor(img_ret), Tensor(target_ret)
def __len__(self):
return self.size
def __iter__(self):
self.batch_index = 0
return self
def reset(self):
self.batch_index = 0
def __next__(self):
if self.batch_index * self.total_batch_size < len(self):
data = self[self.batch_index]
self.batch_index += 1
return data
raise StopIteration
class ParallelStrategySearchNet(Cell):
def __init__(self, in_channel, out_channel, axis, input_shape, mul_size,
test_size, prelu_size, transpose_b, matmul_size, num_class):
super().__init__()
mul_np = np.full(mul_size, 0.5, dtype=np.float32)
self.mul_weight = Parameter(Tensor(mul_np), name="mul_weight")
bias_np = np.full((12,), 7.1, dtype=np.float32)
self.bias = Parameter(Tensor(bias_np), name="bias")
prelu_np = np.full(prelu_size, 0.8, dtype=np.float32)
self.prelu_weight = Parameter(Tensor(prelu_np), name="prelu_weight")
matmul_np = np.full(matmul_size, 1.1, dtype=np.float32)
self.matmul_weight = Parameter(Tensor(matmul_np), name="matmul_weight")
self.mul = P.Mul()
self.conv = Conv2d(in_channels=in_channel, out_channels=out_channel,
kernel_size=5, has_bias=True,
weight_init='ones', bias_init='ones',
pad_mode='valid')
2021-06-08 16:18:44 +08:00
self.conv.conv2d.shard(((8, 1, 1, 1), (1, 1, 1, 1)))
2020-11-24 20:18:23 +08:00
self.scalar = 0.5
self.parameter = Parameter(
initializer(0.5, test_size, dtype=mstype.float32),
name='parameter')
self.tensor = Tensor(np.full(test_size, 0.05, dtype=np.float32))
self.softmax = Softmax(axis=axis)
self.relu = ReLU()
self.relu.relu.add_prim_attr("primitive_target", "CPU")
self.reshape = P.Reshape()
self.input_shape = input_shape
self.equal = P.Equal()
self.cast = P.Cast()
self.concat = P.Concat(axis=1)
self.reduce_sum = P.ReduceSum()
self.bias_add = P.BiasAdd()
self.cos = P.Cos()
self.prelu = P.PReLU()
self.matmul = P.MatMul(transpose_b=transpose_b)
self.l2norm = P.L2Normalize(axis=(1 - axis))
self.tensoradd = P.Add()
2020-11-24 20:18:23 +08:00
self.strided_slice = P.StridedSlice()
self.dense = Dense(in_channels=6,
out_channels=num_class,
weight_init='ones',
bias_init='ones',
has_bias=True)
def construct(self, inputs):
x = self.conv(inputs)
x = self.softmax(x)
x = self.relu(x)
x = self.mul(x, self.mul_weight)
x = self.reshape(x, self.input_shape)
y = self.parameter * self.tensor * self.scalar
z = self.equal(self.parameter, self.scalar)
z = self.cast(z, mstype.float16)
z = self.cast(z, mstype.float32)
x = self.concat((x, y, z))
x = self.reduce_sum(x, (2, 3))
x = self.bias_add(x, self.bias)
y = self.cos(x)
y = self.prelu(y, self.prelu_weight)
z = self.matmul(x, self.matmul_weight)
z = self.l2norm(z)
x = self.tensoradd(y, z)
x = self.strided_slice(x, (0, 0), (32, 6), (1, 1))
x = self.dense(x)
return x
class ParallelStrategySearchFactory:
def __init__(self, standalone_mode_net, parallel_mode_net):
self.standalone_mode_net = standalone_mode_net
self.parallel_mode_net = parallel_mode_net
self.parallel_ckpt = None
self.standalone_ckpt = None
self.global_rank_id = None
self._set_parallel_env()
self._init_parallel()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
return
def __del__(self):
self._release_parallel()
def _set_parallel_env(self):
if 'RANK_ID' in os.environ:
self.global_rank_id = int(os.environ['RANK_ID'])
def _init_parallel(self):
self._init_parallel_flag = False
init(backend_name='hccl')
self._init_parallel_flag = True
def _release_parallel(self):
if self._init_parallel_flag:
release()
def _model_train_and_save_ckpt(self, net, dataset, epoch):
self.opt = Momentum(learning_rate=0.01, momentum=0.9, params=net.get_parameters())
self.loss_fn = SoftmaxCrossEntropyWithLogits(reduction='mean')
self.model = Model(network=net,
loss_fn=self.loss_fn,
optimizer=self.opt)
ckpt_config = CheckpointConfig(keep_checkpoint_max=1)
ckpt_path = './rank_{}_ckpt'.format(self.global_rank_id)
ckpt_callback = ModelCheckpoint(prefix='parallel', directory=ckpt_path,
config=ckpt_config)
clean_all_ckpt_files(ckpt_path)
self.model.train(epoch=epoch,
train_dataset=dataset,
callbacks=[ckpt_callback],
dataset_sink_mode=False)
newest_ckpt_file = find_newest_ckpt_file(ckpt_path)
return load_checkpoint(newest_ckpt_file)
2020-12-14 15:12:03 +08:00
def mindspore_auto_parallel_impl(self, dataset, epoch, device_num, auto_parallel_search_mode="dynamic_programming"):
2020-11-24 20:18:23 +08:00
parallel_mode_net = self.parallel_mode_net
set_algo_parameters(fully_use_devices=False)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL,
2020-12-14 15:12:03 +08:00
device_num=device_num,
auto_parallel_search_mode=auto_parallel_search_mode)
2020-11-24 20:18:23 +08:00
self.parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net,
dataset=dataset, epoch=epoch)
context.reset_auto_parallel_context()
def mindspore_standalone_impl(self, dataset, epoch):
standalone_mode_net = self.standalone_mode_net
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.STAND_ALONE)
self.standalone_ckpt = self._model_train_and_save_ckpt(net=standalone_mode_net,
dataset=dataset, epoch=epoch)
context.reset_auto_parallel_context()
def checkpoint_cmp(self, inputs_np):
standalone_net = self.standalone_mode_net
load_param_into_net(standalone_net, self.standalone_ckpt)
standalone_out = standalone_net(Tensor(inputs_np))
parallel_net = self.standalone_mode_net
load_param_into_net(parallel_net, self.parallel_ckpt)
parallel_out = parallel_net(Tensor(inputs_np))
allclose_nparray(standalone_out.asnumpy(), parallel_out.asnumpy(),
0.001, 0.001)
def test_auto_parallel_strategy_search_axis_1_basic():
inputs_np = np.random.randn(32, 3, 224, 224).astype(np.float32)
standalone_mode_net = ParallelStrategySearchNet(in_channel=3,
out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
mul_size=(32, 1, 220, 220), test_size=(32, 4, 110, 880),
prelu_size=(1,), transpose_b=True, matmul_size=(1, 12),
num_class=12)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL)
parallel_mode_net = ParallelStrategySearchNet(in_channel=3,
out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
mul_size=(32, 1, 220, 220), test_size=(32, 4, 110, 880),
prelu_size=(1,), transpose_b=True, matmul_size=(1, 12),
num_class=12)
parallel_mode_net.cos.shard(((2, 4),))
parallel_mode_net.matmul.shard(((1, 2), (1, 2)))
standalone_dataset = FakeData(size=128, batch_size=32,
image_size=(3, 224, 224), num_classes=12)
fact = ParallelStrategySearchFactory(standalone_mode_net=standalone_mode_net,
parallel_mode_net=parallel_mode_net)
fact.mindspore_standalone_impl(dataset=standalone_dataset, epoch=2)
parallel_dataset = FakeData(size=128, batch_size=4,
image_size=(3, 224, 224), use_parallel=True,
num_classes=12)
fact.mindspore_auto_parallel_impl(dataset=parallel_dataset,
epoch=2, device_num=8)
fact.checkpoint_cmp(inputs_np=inputs_np)
2020-12-14 15:12:03 +08:00
def test_auto_parallel_recursive_strategy_search_axis_1_basic():
inputs_np = np.random.randn(32, 3, 224, 224).astype(np.float32)
standalone_mode_net = ParallelStrategySearchNet(in_channel=3,
out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
mul_size=(32, 1, 220, 220), test_size=(32, 4, 110, 880),
prelu_size=(1,), transpose_b=True, matmul_size=(1, 12),
num_class=12)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL)
parallel_mode_net = ParallelStrategySearchNet(in_channel=3,
out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
mul_size=(32, 1, 220, 220), test_size=(32, 4, 110, 880),
prelu_size=(1,), transpose_b=True, matmul_size=(1, 12),
num_class=12)
standalone_dataset = FakeData(size=128, batch_size=32,
image_size=(3, 224, 224), num_classes=12)
fact = ParallelStrategySearchFactory(standalone_mode_net=standalone_mode_net,
parallel_mode_net=parallel_mode_net)
fact.mindspore_standalone_impl(dataset=standalone_dataset, epoch=2)
parallel_dataset = FakeData(size=128, batch_size=4,
image_size=(3, 224, 224), use_parallel=True,
num_classes=12)
fact.mindspore_auto_parallel_impl(dataset=parallel_dataset,
epoch=2, device_num=8, auto_parallel_search_mode="recursive_programming")
fact.checkpoint_cmp(inputs_np=inputs_np)