forked from mindspore-Ecosystem/mindspore
316 lines
13 KiB
Python
316 lines
13 KiB
Python
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import os
|
||
|
import numpy as np
|
||
|
|
||
|
import mindspore.ops.operations as P
|
||
|
from mindspore.nn import Cell
|
||
|
from mindspore.nn import Adam
|
||
|
from mindspore.nn import MultiFieldEmbeddingLookup as embedding
|
||
|
from mindspore import Tensor
|
||
|
from mindspore import context
|
||
|
from mindspore.train import Model
|
||
|
from mindspore.train.callback import CheckpointConfig
|
||
|
from mindspore.train.callback import ModelCheckpoint
|
||
|
from mindspore.train.serialization import load_checkpoint
|
||
|
from mindspore.train.serialization import load_param_into_net
|
||
|
from mindspore.communication.management import init
|
||
|
from mindspore.communication.management import release
|
||
|
from mindspore.communication.management import get_rank
|
||
|
from mindspore.communication.management import get_group_size
|
||
|
from mindspore.context import ParallelMode
|
||
|
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||
|
|
||
|
|
||
|
def _count_unequal_element(data_expected, data_me, rtol, atol):
|
||
|
assert data_expected.shape == data_me.shape
|
||
|
total_count = len(data_expected.flatten())
|
||
|
error = np.abs(data_expected - data_me)
|
||
|
greater = np.greater(error, atol + np.abs(data_me) * rtol)
|
||
|
loss_count = np.count_nonzero(greater)
|
||
|
assert (loss_count / total_count) < rtol, \
|
||
|
"\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
|
||
|
format(data_expected[greater], data_me[greater], error[greater])
|
||
|
|
||
|
|
||
|
def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
|
||
|
if np.any(np.isnan(data_expected)):
|
||
|
assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan)
|
||
|
elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan):
|
||
|
_count_unequal_element(data_expected, data_me, rtol, atol)
|
||
|
else:
|
||
|
assert True
|
||
|
|
||
|
def clean_all_ckpt_files(folder_path):
|
||
|
if os.path.exists(folder_path):
|
||
|
for file_name in os.listdir(folder_path):
|
||
|
if file_name.endswith('.ckpt') or file_name.endswith('.meta'):
|
||
|
os.remove(os.path.join(folder_path, file_name))
|
||
|
|
||
|
|
||
|
def find_newest_ckpt_file(folder_path):
|
||
|
ckpt_files = map(lambda f: os.path.join(folder_path, f),
|
||
|
filter(lambda f: f.endswith('.ckpt'),
|
||
|
os.listdir(folder_path)))
|
||
|
return max(ckpt_files, key=os.path.getctime)
|
||
|
|
||
|
|
||
|
class FakeDataInitMode:
|
||
|
RandomInit = 0
|
||
|
OnesInit = 1
|
||
|
UniqueInit = 2
|
||
|
ZerosInit = 3
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
class FakeData:
|
||
|
def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224),
|
||
|
num_classes=10, random_offset=0, use_parallel=False,
|
||
|
fakedata_mode=FakeDataInitMode.RandomInit):
|
||
|
self.size = size
|
||
|
self.rank_batch_size = batch_size
|
||
|
self.total_batch_size = self.rank_batch_size
|
||
|
self.random_offset = random_offset
|
||
|
self.image_size = image_size
|
||
|
self.num_classes = num_classes
|
||
|
self.rank_size = 1
|
||
|
self.rank_id = 0
|
||
|
self.batch_index = 0
|
||
|
self.image_data_type = np.float32
|
||
|
self.label_data_type = np.float32
|
||
|
self.is_onehot = True
|
||
|
self.fakedata_mode = fakedata_mode
|
||
|
|
||
|
if use_parallel is True:
|
||
|
init(backend_name='nccl')
|
||
|
self.rank_size = get_group_size()
|
||
|
self.rank_id = get_rank()
|
||
|
|
||
|
self.total_batch_size = self.rank_batch_size * self.rank_size
|
||
|
|
||
|
assert (self.size % self.total_batch_size) == 0
|
||
|
|
||
|
self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
|
||
|
|
||
|
def get_dataset_size(self):
|
||
|
return int(self.size / self.total_batch_size)
|
||
|
|
||
|
def get_repeat_count(self):
|
||
|
return 1
|
||
|
|
||
|
def set_image_data_type(self, data_type):
|
||
|
self.image_data_type = data_type
|
||
|
|
||
|
def set_label_data_type(self, data_type):
|
||
|
self.label_data_type = data_type
|
||
|
|
||
|
def set_label_onehot(self, is_onehot=True):
|
||
|
self.is_onehot = is_onehot
|
||
|
|
||
|
def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
|
||
|
_ = num_epochs
|
||
|
return self
|
||
|
|
||
|
def __getitem__(self, batch_index):
|
||
|
if batch_index * self.total_batch_size >= len(self):
|
||
|
raise IndexError("{} index out of range".format(self.__class__.__name__))
|
||
|
rng_state = np.random.get_state()
|
||
|
np.random.seed(batch_index + self.random_offset)
|
||
|
if self.fakedata_mode == FakeDataInitMode.OnesInit:
|
||
|
img = np.ones(self.total_batch_data_size)
|
||
|
elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
|
||
|
img = np.zeros(self.total_batch_data_size)
|
||
|
elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
|
||
|
total_size = 1
|
||
|
for i in self.total_batch_data_size:
|
||
|
total_size = total_size * i
|
||
|
img = np.reshape(np.arange(total_size) * 0.0001, self.total_batch_data_size)
|
||
|
else:
|
||
|
img = np.random.randn(*self.total_batch_data_size)
|
||
|
target = np.random.randint(0, self.num_classes, size=(self.rank_size, self.rank_batch_size))
|
||
|
np.random.set_state(rng_state)
|
||
|
img = img[self.rank_id]
|
||
|
target = target[self.rank_id]
|
||
|
img_ret = img.astype(self.image_data_type)
|
||
|
target_ret = target.astype(self.label_data_type)
|
||
|
if self.is_onehot:
|
||
|
target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_classes))
|
||
|
target_onehot[np.arange(self.rank_batch_size), target] = 1
|
||
|
target_ret = target_onehot.astype(self.label_data_type)
|
||
|
return Tensor(img_ret), Tensor(target_ret)
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.size
|
||
|
|
||
|
def __iter__(self):
|
||
|
self.batch_index = 0
|
||
|
return self
|
||
|
|
||
|
def reset(self):
|
||
|
self.batch_index = 0
|
||
|
|
||
|
def __next__(self):
|
||
|
if self.batch_index * self.total_batch_size < len(self):
|
||
|
data = self[self.batch_index]
|
||
|
self.batch_index += 1
|
||
|
return data
|
||
|
raise StopIteration
|
||
|
|
||
|
|
||
|
|
||
|
class MultiHotNet(Cell):
|
||
|
def __init__(self, vocab_size, embedding_size, field_size,
|
||
|
param_init, target, slice_mode, sparse, operator, indices, field_ids):
|
||
|
super().__init__()
|
||
|
self.embedding = embedding(vocab_size=vocab_size,
|
||
|
embedding_size=embedding_size, field_size=field_size,
|
||
|
param_init=param_init, target=target, slice_mode=slice_mode,
|
||
|
sparse=sparse, operator=operator)
|
||
|
self.relu = P.ReLU()
|
||
|
self.indices = Tensor(indices)
|
||
|
self.field_ids = Tensor(field_ids)
|
||
|
if slice_mode == "table_column_slice":
|
||
|
self.relu.shard(((1, 1, 8),))
|
||
|
elif slice_mode == "table_row_slice":
|
||
|
self.relu.shard(((8, 1, 1),))
|
||
|
elif slice_mode == "batch_slice":
|
||
|
self.relu.shard(((8, 1, 1),))
|
||
|
|
||
|
def construct(self, values, label):
|
||
|
x = self.embedding(self.indices, values, self.field_ids)
|
||
|
output = self.relu(x)
|
||
|
return output
|
||
|
|
||
|
|
||
|
class ParallelMultiHotFactory:
|
||
|
def __init__(self, vocab_size, embedding_size, field_size,
|
||
|
param_init, target, slice_mode, sparse, operator, indices, field_ids):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.embedding_size = embedding_size
|
||
|
self.field_size = field_size
|
||
|
self.param_init = param_init
|
||
|
self.target = target
|
||
|
self.slice_mode = slice_mode
|
||
|
self.sparse = sparse
|
||
|
self.operator = operator
|
||
|
self.indices = indices
|
||
|
self.field_ids = field_ids
|
||
|
self.global_rank_id = None
|
||
|
self.opt = None
|
||
|
self.model = None
|
||
|
self.standalone_ckpt = None
|
||
|
self.parallel_ckpt = None
|
||
|
self.loss_fn = None
|
||
|
self._init_parallel()
|
||
|
self._set_parallel_env()
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||
|
return
|
||
|
|
||
|
def __del__(self):
|
||
|
self._release_parallel()
|
||
|
|
||
|
def _set_parallel_env(self):
|
||
|
self.global_rank_id = get_rank()
|
||
|
|
||
|
def _init_parallel(self):
|
||
|
self._init_parallel_flag = False
|
||
|
init(backend_name='nccl')
|
||
|
self._init_parallel_flag = True
|
||
|
|
||
|
def _release_parallel(self):
|
||
|
release()
|
||
|
|
||
|
def _model_train_and_save_ckpt(self, net, dataset, epoch):
|
||
|
self.opt = Adam(params=net.get_parameters())
|
||
|
if self.target == 'CPU':
|
||
|
self.opt.target = self.target
|
||
|
if self.sparse:
|
||
|
context.set_context(enable_sparse=True)
|
||
|
self.model = Model(network=net,
|
||
|
loss_fn=self.loss_fn,
|
||
|
optimizer=self.opt)
|
||
|
ckpt_config = CheckpointConfig(keep_checkpoint_max=1)
|
||
|
ckpt_path = './rank_{}_ckpt'.format(self.global_rank_id)
|
||
|
ckpt_callback = ModelCheckpoint(prefix='parallel', directory=ckpt_path,
|
||
|
config=ckpt_config)
|
||
|
clean_all_ckpt_files(ckpt_path)
|
||
|
self.model.train(epoch=epoch,
|
||
|
train_dataset=dataset,
|
||
|
callbacks=[ckpt_callback],
|
||
|
dataset_sink_mode=False)
|
||
|
newest_ckpt_file = find_newest_ckpt_file(ckpt_path)
|
||
|
return load_checkpoint(newest_ckpt_file)
|
||
|
|
||
|
def mindspore_auto_parallel_impl(self, dataset, epoch, device_num):
|
||
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL,
|
||
|
device_num=device_num)
|
||
|
parallel_mode_net = MultiHotNet(vocab_size=self.vocab_size, embedding_size=self.embedding_size,
|
||
|
field_size=self.field_size, param_init=self.param_init, target=self.target,
|
||
|
slice_mode=self.slice_mode, sparse=self.sparse, operator=self.operator,
|
||
|
indices=self.indices, field_ids=self.field_ids)
|
||
|
self.parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net, epoch=epoch, dataset=dataset)
|
||
|
|
||
|
def mindspore_standalone_impl(self, epoch, dataset):
|
||
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.STAND_ALONE)
|
||
|
stand_alone_net = MultiHotNet(vocab_size=self.vocab_size, embedding_size=self.embedding_size,
|
||
|
field_size=self.field_size, param_init=self.param_init, target=self.target,
|
||
|
slice_mode=self.slice_mode, sparse=self.sparse, operator=self.operator,
|
||
|
indices=self.indices, field_ids=self.field_ids)
|
||
|
self.standalone_ckpt = self._model_train_and_save_ckpt(net=stand_alone_net,
|
||
|
epoch=epoch, dataset=dataset)
|
||
|
|
||
|
def checkpoint_cmp(self, inputs_np, label):
|
||
|
standalone_net = MultiHotNet(vocab_size=self.vocab_size, embedding_size=self.embedding_size,
|
||
|
field_size=self.field_size, param_init=self.param_init, target=self.target,
|
||
|
slice_mode=self.slice_mode, sparse=self.sparse, operator=self.operator,
|
||
|
indices=self.indices, field_ids=self.field_ids)
|
||
|
parallel_net = MultiHotNet(vocab_size=self.vocab_size, embedding_size=self.embedding_size,
|
||
|
field_size=self.field_size, param_init=self.param_init, target=self.target,
|
||
|
slice_mode=self.slice_mode, sparse=self.sparse, operator=self.operator,
|
||
|
indices=self.indices, field_ids=self.field_ids)
|
||
|
load_param_into_net(standalone_net, self.standalone_ckpt)
|
||
|
load_param_into_net(parallel_net, self.parallel_ckpt)
|
||
|
standalone_out = standalone_net(Tensor(inputs_np), Tensor(label))
|
||
|
parallel_out = parallel_net(Tensor(inputs_np), Tensor(label))
|
||
|
allclose_nparray(standalone_out.asnumpy(), parallel_out.asnumpy(), 0.001, 0.001)
|
||
|
|
||
|
def test_auto_parallel_multifieldembeddinglookup_device_table_column_slice_mean():
|
||
|
inputs_np = 10 * np.random.randn(64, 64).astype(np.float32)
|
||
|
label = 10 * np.random.randn(64, 64).astype(np.float32)
|
||
|
indices = np.random.randint(0, 9, (64, 64), np.int32)
|
||
|
field_ids = np.random.randint(0, 20, (64, 64), np.int32)
|
||
|
fact = ParallelMultiHotFactory(vocab_size=32, embedding_size=64, field_size=64, param_init='one', target='DEVICE',
|
||
|
slice_mode='table_column_slice', sparse=False, operator='MEAN',
|
||
|
indices=indices, field_ids=field_ids)
|
||
|
|
||
|
#stand alone
|
||
|
standalone_dataset = FakeData(size=64, batch_size=64, image_size=(64,))
|
||
|
fact.mindspore_standalone_impl(dataset=standalone_dataset, epoch=2)
|
||
|
|
||
|
#auto parallel
|
||
|
parallel_dataset = FakeData(size=64, batch_size=8, image_size=(64,), use_parallel=True)
|
||
|
fact.mindspore_auto_parallel_impl(dataset=parallel_dataset, epoch=2, device_num=8)
|
||
|
|
||
|
#compare
|
||
|
fact.checkpoint_cmp(inputs_np=inputs_np, label=label)
|