2021-02-24 19:30:57 +08:00
|
|
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
""" test scatter update """
|
|
|
|
import numpy as np
|
2021-05-10 11:03:42 +08:00
|
|
|
import pytest
|
2021-02-24 19:30:57 +08:00
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor, Model, Parameter
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore import context
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
"""Net definition"""
|
2021-04-27 19:31:19 +08:00
|
|
|
def __init__(self, strategy1=None, strategy2=None):
|
2021-02-24 19:30:57 +08:00
|
|
|
super(Net, self).__init__()
|
2021-04-27 19:31:19 +08:00
|
|
|
self.inputs = Parameter(Tensor(np.ones([32, 64, 128]).astype(np.float32)), "input")
|
|
|
|
self.indices = Tensor(np.ones([4, 8]).astype(np.int32))
|
|
|
|
self.updates = Tensor(np.ones([4, 8, 64, 128]).astype(np.float32))
|
|
|
|
self.scatter_update = P.ScatterUpdate().shard(strategy1)
|
|
|
|
self.add = P.TensorAdd().shard(strategy2)
|
2021-02-24 19:30:57 +08:00
|
|
|
self.relu = P.ReLU()
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
out = self.scatter_update(self.inputs, self.indices, self.updates)
|
|
|
|
out = self.add(x, out)
|
|
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
def test_distribute_predict():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True)
|
2021-04-27 19:31:19 +08:00
|
|
|
inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32))
|
|
|
|
strategy1 = ((1, 2, 4), (1, 1), (1, 1, 2, 4))
|
|
|
|
strategy2 = ((1, 2, 4), (1, 2, 4))
|
|
|
|
net = Net(strategy1, strategy2)
|
|
|
|
model = Model(net)
|
|
|
|
predict_map = model.infer_predict_layout(inputs)
|
|
|
|
output = model.predict(inputs)
|
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
return predict_map, output
|
|
|
|
|
|
|
|
|
2021-05-10 11:03:42 +08:00
|
|
|
def test_scatter_update_wrong_strategy():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True)
|
|
|
|
inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32))
|
|
|
|
strategy1 = ((1, 2, 4), (1, 1), (1, 1, 4, 2))
|
|
|
|
strategy2 = ((1, 2, 4), (1, 2, 4))
|
|
|
|
net = Net(strategy1, strategy2)
|
|
|
|
model = Model(net)
|
|
|
|
with pytest.raises(RuntimeError):
|
|
|
|
model.predict(inputs)
|
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
|
|
|
|
2021-04-27 19:31:19 +08:00
|
|
|
def test_distribute_predict_auto_parallel():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
|
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, full_batch=True)
|
|
|
|
inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32))
|
2021-02-24 19:30:57 +08:00
|
|
|
net = Net()
|
|
|
|
model = Model(net)
|
|
|
|
predict_map = model.infer_predict_layout(inputs)
|
|
|
|
output = model.predict(inputs)
|
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
return predict_map, output
|