mindspore/tests/ut/python/parallel/test_scatter_update.py

79 lines
3.1 KiB
Python
Raw Normal View History

2021-02-24 19:30:57 +08:00
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test scatter update """
import numpy as np
import pytest
2021-02-24 19:30:57 +08:00
import mindspore.nn as nn
from mindspore import Tensor, Model, Parameter
from mindspore.ops import operations as P
from mindspore import context
class Net(nn.Cell):
"""Net definition"""
2021-04-27 19:31:19 +08:00
def __init__(self, strategy1=None, strategy2=None):
2021-02-24 19:30:57 +08:00
super(Net, self).__init__()
2021-04-27 19:31:19 +08:00
self.inputs = Parameter(Tensor(np.ones([32, 64, 128]).astype(np.float32)), "input")
self.indices = Tensor(np.ones([4, 8]).astype(np.int32))
self.updates = Tensor(np.ones([4, 8, 64, 128]).astype(np.float32))
self.scatter_update = P.ScatterUpdate().shard(strategy1)
self.add = P.TensorAdd().shard(strategy2)
2021-02-24 19:30:57 +08:00
self.relu = P.ReLU()
def construct(self, x):
out = self.scatter_update(self.inputs, self.indices, self.updates)
out = self.add(x, out)
out = self.relu(out)
return out
def test_distribute_predict():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True)
2021-04-27 19:31:19 +08:00
inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32))
strategy1 = ((1, 2, 4), (1, 1), (1, 1, 2, 4))
strategy2 = ((1, 2, 4), (1, 2, 4))
net = Net(strategy1, strategy2)
model = Model(net)
predict_map = model.infer_predict_layout(inputs)
output = model.predict(inputs)
context.reset_auto_parallel_context()
return predict_map, output
def test_scatter_update_wrong_strategy():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True)
inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32))
strategy1 = ((1, 2, 4), (1, 1), (1, 1, 4, 2))
strategy2 = ((1, 2, 4), (1, 2, 4))
net = Net(strategy1, strategy2)
model = Model(net)
with pytest.raises(RuntimeError):
model.predict(inputs)
context.reset_auto_parallel_context()
2021-04-27 19:31:19 +08:00
def test_distribute_predict_auto_parallel():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, full_batch=True)
inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32))
2021-02-24 19:30:57 +08:00
net = Net()
model = Model(net)
predict_map = model.infer_predict_layout(inputs)
output = model.predict(inputs)
context.reset_auto_parallel_context()
return predict_map, output