mindspore/tests/ut/python/parallel/test_range.py

110 lines
3.5 KiB
Python
Raw Normal View History

2020-11-07 13:58:32 +08:00
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
2021-03-16 10:47:42 +08:00
from mindspore.common import dtype as mstype
2020-11-07 13:58:32 +08:00
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, weight, start, limit, delta, strategy1=None, strategy2=None, strategy3=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
2021-03-16 10:47:42 +08:00
if isinstance(start, float):
self.type = mstype.float32
else:
self.type = mstype.int32
self.start = Tensor(start, self.type)
self.limit = Tensor(limit, self.type)
self.delta = Tensor(delta, self.type)
self.range = P.Range()
self.range.shard(strategy2)
2020-11-07 13:58:32 +08:00
self.mul2 = P.Mul().shard(strategy3)
self.weight = Parameter(weight, "w")
def construct(self, x, b):
2021-03-16 10:47:42 +08:00
r_out = self.range(self.start, self.limit, self.delta)
2020-11-07 13:58:32 +08:00
out = self.mul(x, self.weight)
out = self.mul2(out, r_out)
return out
2021-03-16 10:47:42 +08:00
2020-11-07 13:58:32 +08:00
dev_num = 4
_x = Tensor(np.ones([64 // dev_num, 8]), dtype=ms.float32)
_b = Tensor(np.ones([8]), dtype=ms.float32)
_w1 = Tensor(np.ones([64, 8]), dtype=ms.float32)
def compile_net(net):
2021-04-02 20:19:26 +08:00
context.set_context(save_graphs=False)
2020-11-07 13:58:32 +08:00
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, optimizer=opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()
def test_range():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=dev_num, global_rank=2)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((2,),)
strategy3 = ((2, 2), (2,))
net = Net(_w1, 0, 8, 1, strategy1, strategy2, strategy3)
compile_net(net)
def test_range2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=dev_num, global_rank=0)
strategy1 = ((4, 1), (4, 1))
strategy2 = ((1,),)
strategy3 = ((4, 1), (1,))
net = Net(_w1, 0.0, 4.0, 0.5, strategy1, strategy2, strategy3)
compile_net(net)
def test_range3():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=dev_num, global_rank=2)
2021-03-16 10:47:42 +08:00
net = Net(_w1, 0.0, 4.0, 0.5)
2020-11-07 13:58:32 +08:00
compile_net(net)