mindspore/model_zoo/bert/run_pretrain.py

143 lines
8.2 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
#################pre_train bert example on zh-wiki########################
python run_pretrain.py
"""
import os
import argparse
import mindspore.communication.management as D
from mindspore import context
from mindspore.train.model import Model
from mindspore.train.parallel_utils import ParallelMode
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.train.callback import Callback, ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecayDynamicLR
from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell
from src.dataset import create_bert_dataset
from src.config import cfg, bert_net_cfg
_current_dir = os.path.dirname(os.path.realpath(__file__))
class LossCallBack(Callback):
"""
Monitor the loss in training.
If the loss in NAN or INF terminating training.
Note:
if per_print_times is 0 do not print loss.
Args:
per_print_times (int): Print loss every times. Default: 1.
"""
def __init__(self, per_print_times=1):
super(LossCallBack, self).__init__()
if not isinstance(per_print_times, int) or per_print_times < 0:
raise ValueError("print_step must be int and >= 0")
self._per_print_times = per_print_times
def step_end(self, run_context):
cb_params = run_context.original_args()
print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
str(cb_params.net_outputs)))
def run_pretrain():
"""pre-train bert_clue"""
parser = argparse.ArgumentParser(description='bert pre_training')
parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.")
parser.add_argument("--enable_lossscale", type=str, default="true", help="Use lossscale or not, default is not.")
parser.add_argument("--do_shuffle", type=str, default="true", help="Enable shuffle for dataset, default is true.")
parser.add_argument("--enable_data_sink", type=str, default="true", help="Enable data sink, default is true.")
parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.")
parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path")
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
"default is 1000.")
parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path")
parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
context.set_context(reserve_class_name_in_scope=False)
if args_opt.distribute == "true":
device_num = args_opt.device_num
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
device_num=device_num)
from mindspore.parallel._auto_parallel_context import auto_parallel_context
if bert_net_cfg.num_hidden_layers == 12:
auto_parallel_context().set_all_reduce_fusion_split_indices([28, 55, 82, 109, 136, 163, 190, 205])
elif bert_net_cfg.num_hidden_layers == 24:
auto_parallel_context().set_all_reduce_fusion_split_indices([38, 93, 148, 203, 258, 313, 368, 397])
D.init()
rank = args_opt.device_id % device_num
else:
rank = 0
device_num = 1
ds, new_repeat_count = create_bert_dataset(args_opt.epoch_size, device_num, rank, args_opt.do_shuffle,
args_opt.enable_data_sink, args_opt.data_sink_steps,
args_opt.data_dir, args_opt.schema_dir)
netwithloss = BertNetworkWithLoss(bert_net_cfg, True)
if cfg.optimizer == 'Lamb':
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size() * ds.get_repeat_count(),
start_learning_rate=cfg.Lamb.start_learning_rate, end_learning_rate=cfg.Lamb.end_learning_rate,
power=cfg.Lamb.power, warmup_steps=cfg.Lamb.warmup_steps, weight_decay=cfg.Lamb.weight_decay,
eps=cfg.Lamb.eps)
elif cfg.optimizer == 'Momentum':
optimizer = Momentum(netwithloss.trainable_params(), learning_rate=cfg.Momentum.learning_rate,
momentum=cfg.Momentum.momentum)
elif cfg.optimizer == 'AdamWeightDecayDynamicLR':
optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(),
decay_steps=ds.get_dataset_size() * ds.get_repeat_count(),
learning_rate=cfg.AdamWeightDecayDynamicLR.learning_rate,
end_learning_rate=cfg.AdamWeightDecayDynamicLR.end_learning_rate,
power=cfg.AdamWeightDecayDynamicLR.power,
weight_decay=cfg.AdamWeightDecayDynamicLR.weight_decay,
eps=cfg.AdamWeightDecayDynamicLR.eps,
warmup_steps=cfg.AdamWeightDecayDynamicLR.warmup_steps)
else:
raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecayDynamicLR]".
format(cfg.optimizer))
callback = [TimeMonitor(ds.get_dataset_size()), LossCallBack()]
if args_opt.enable_save_ckpt == "true":
config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
keep_checkpoint_max=args_opt.save_checkpoint_num)
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_bert', config=config_ck)
callback.append(ckpoint_cb)
if args_opt.checkpoint_path:
param_dict = load_checkpoint(args_opt.checkpoint_path)
load_param_into_net(netwithloss, param_dict)
if args_opt.enable_lossscale == "true":
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value,
scale_factor=cfg.scale_factor,
scale_window=cfg.scale_window)
netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
scale_update_cell=update_cell)
else:
netwithgrads = BertTrainOneStepCell(netwithloss, optimizer=optimizer)
model = Model(netwithgrads)
model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == "true"))
if __name__ == '__main__':
run_pretrain()