mindspore/example/resnet50_cifar10/eval.py

73 lines
3.4 KiB
Python
Executable File

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
eval.
"""
import os
import argparse
from dataset import create_dataset
from config import config
from mindspore import context
from mindspore.model_zoo.resnet import resnet50
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.model import Model, ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_group_size
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
parser.add_argument('--do_train', type=bool, default=False, help='Do train or not.')
parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
args_opt = parser.parse_args()
if __name__ == '__main__':
target = args_opt.device_target
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
if not args_opt.do_eval and args_opt.run_distribute:
if target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(device_id=device_id)
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)
auto_parallel_context().set_all_reduce_fusion_split_indices([140])
init()
elif target == "GPU":
init("nccl")
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)
epoch_size = config.epoch_size
net = resnet50(class_num=config.class_num)
loss = SoftmaxCrossEntropyWithLogits(sparse=True)
if args_opt.do_eval:
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size,
target=target)
step_size = dataset.get_dataset_size()
if args_opt.checkpoint_path:
param_dict = load_checkpoint(args_opt.checkpoint_path)
load_param_into_net(net, param_dict)
net.set_train(False)
model = Model(net, loss_fn=loss, metrics={'acc'})
res = model.eval(dataset)
print("result:", res, "ckpt=", args_opt.checkpoint_path)