mindspore/tests/ut/cpp/dataset/shuffle_op_test.cc

336 lines
10 KiB
C++

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/core/client.h"
#include "common/common.h"
#include "common/utils.h"
#include "gtest/gtest.h"
#include "utils/log_adapter.h"
#include <memory>
#include <vector>
#include <iostream>
namespace common = mindspore::common;
using namespace mindspore::dataset;
using mindspore::MsLogLevel::INFO;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
class MindDataTestShuffleOp : public UT::DatasetOpTesting {
};
// Test info:
// - Dataset from testDataset1 has 10 rows, 2 columns.
// - RowsPerBuffer buffer setting of 2 divides evenly into total rows.
// - Shuffle size is multiple of rows per buffer.
//
// Tree: shuffle over TFReader
//
// ShuffleOp
// |
// TFReaderOp
//
TEST_F(MindDataTestShuffleOp, TestShuffleBasic1) {
Status rc;
MS_LOG(INFO) << "UT test TestShuffleBasic1.";
// Start with an empty execution tree
auto my_tree = std::make_shared<ExecutionTree>();
std::string dataset_path;
dataset_path = datasets_root_path_ + "/testDataset1/testDataset1.data";
std::shared_ptr<TFReaderOp> my_tfreader_op;
rc = TFReaderOp::Builder()
.SetDatasetFilesList({dataset_path})
.SetRowsPerBuffer(2)
.SetWorkerConnectorSize(16)
.SetNumWorkers(1)
.Build(&my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
std::shared_ptr<ShuffleOp> my_shuffle_op;
rc = ShuffleOp::Builder().SetRowsPerBuffer(2).SetShuffleSize(4).Build(&my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
// Set children/root layout.
rc = my_shuffle_op->AddChild(my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssignRoot(my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
MS_LOG(INFO) << "Launching tree and begin iteration.";
rc = my_tree->Prepare();
EXPECT_TRUE(rc.IsOk());
rc = my_tree->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree);
TensorRow tensor_list;
rc = di.FetchNextTensorRow(&tensor_list);
EXPECT_TRUE(rc.IsOk());
int row_count = 0;
while (!tensor_list.empty()) {
MS_LOG(INFO) << "Row display for row #: " << row_count << ".";
// Display the tensor by calling the printer on it
for (int i = 0; i < tensor_list.size(); i++) {
std::ostringstream ss;
ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
MS_LOG(INFO) << "Tensor print: " << ss.str() << ".";
}
rc = di.FetchNextTensorRow(&tensor_list);
EXPECT_TRUE(rc.IsOk());
row_count++;
}
ASSERT_EQ(row_count, 10);
}
// Test info:
// - Dataset from testDataset1 has 10 rows, 2 columns.
// - RowsPerBuffer buffer setting of 3 does not divide evenly into total rows, thereby causing
// partially filled buffers.
// - Shuffle size is not a multiple of rows per buffer.
// - User has provided a non-default seed value.
//
// Tree: shuffle over TFReader
//
// ShuffleOp
// |
// TFReaderOp
//
TEST_F(MindDataTestShuffleOp, TestShuffleBasic2) {
Status rc;
MS_LOG(INFO) << "UT test TestShuffleBasic2.";
// Start with an empty execution tree
auto my_tree = std::make_shared<ExecutionTree>();
std::string dataset_path;
dataset_path = datasets_root_path_ + "/testDataset1/testDataset1.data";
std::shared_ptr<TFReaderOp> my_tfreader_op;
rc = TFReaderOp::Builder()
.SetDatasetFilesList({dataset_path})
.SetRowsPerBuffer(3)
.SetWorkerConnectorSize(16)
.SetNumWorkers(2)
.Build(&my_tfreader_op);
ASSERT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
std::shared_ptr<ShuffleOp> my_shuffle_op;
rc = ShuffleOp::Builder().SetShuffleSize(4).SetShuffleSeed(100).SetRowsPerBuffer(3).Build(&my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
// Set children/root layout.
rc = my_shuffle_op->AddChild(my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssignRoot(my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
MS_LOG(INFO) << "Launching tree and begin iteration.";
rc = my_tree->Prepare();
EXPECT_TRUE(rc.IsOk());
rc = my_tree->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree);
TensorRow tensor_list;
rc = di.FetchNextTensorRow(&tensor_list);
EXPECT_TRUE(rc.IsOk());
int row_count = 0;
while (!tensor_list.empty()) {
MS_LOG(INFO) << "Row display for row #: " << row_count << ".";
// Display the tensor by calling the printer on it
for (int i = 0; i < tensor_list.size(); i++) {
std::ostringstream ss;
ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
MS_LOG(INFO) << "Tensor print: " << ss.str() << ".";
}
rc = di.FetchNextTensorRow(&tensor_list);
EXPECT_TRUE(rc.IsOk());
row_count++;
}
ASSERT_EQ(row_count, 10);
}
// Test info:
// - Dataset from testDataset1 has 10 rows, 2 columns.
// - RowsPerBuffer buffer setting of 3 does not divide evenly into total rows, thereby causing
// partially filled buffers
// - Shuffle size captures the entire dataset size (actually sets a value that is larger than the
// amount of rows in the dataset.
//
// Tree: shuffle over TFReader
//
// ShuffleOp
// |
// TFReaderOp
//
TEST_F(MindDataTestShuffleOp, TestShuffleBasic3) {
Status rc;
MS_LOG(INFO) << "UT test TestShuffleBasic3.";
// Start with an empty execution tree
auto my_tree = std::make_shared<ExecutionTree>();
std::string dataset_path;
dataset_path = datasets_root_path_ + "/testDataset1/testDataset1.data";
std::shared_ptr<TFReaderOp> my_tfreader_op;
rc = TFReaderOp::Builder()
.SetDatasetFilesList({dataset_path})
.SetRowsPerBuffer(3)
.SetWorkerConnectorSize(16)
.SetNumWorkers(2)
.Build(&my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
my_tree->AssociateNode(my_tfreader_op);
std::shared_ptr<ShuffleOp> my_shuffle_op;
rc = ShuffleOp::Builder().SetShuffleSize(100).SetRowsPerBuffer(3).Build(&my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
// Set children/root layout.
rc = my_shuffle_op->AddChild(my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssignRoot(my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
MS_LOG(INFO) << "Launching tree and begin iteration.";
rc = my_tree->Prepare();
EXPECT_TRUE(rc.IsOk());
rc = my_tree->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree);
TensorRow tensor_list;
rc = di.FetchNextTensorRow(&tensor_list);
EXPECT_TRUE(rc.IsOk());
int row_count = 0;
while (!tensor_list.empty()) {
MS_LOG(INFO) << "Row display for row #: " << row_count << ".";
// Display the tensor by calling the printer on it
for (int i = 0; i < tensor_list.size(); i++) {
std::ostringstream ss;
ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
MS_LOG(INFO) << "Tensor print: " << common::SafeCStr(ss.str()) << ".";
}
rc = di.FetchNextTensorRow(&tensor_list);
EXPECT_TRUE(rc.IsOk());
row_count++;
}
ASSERT_EQ(row_count, 10);
}
// Test info:
// - Dataset from testDataset1 has 10 rows, 2 columns.
// - RowsPerBuffer buffer setting of 3 does not divide evenly into total rows thereby causing
// partially filled buffers
// - Shuffle size is not a multiple of rows per buffer.
// - shuffle seed is given, and subsequent epochs will change the seed each time.
// - Repeat count of 2
//
// Tree: Repeat over shuffle over TFReader
//
// Repeat
// |
// shuffle
// |
// TFReaderOp
//
TEST_F(MindDataTestShuffleOp, TestRepeatShuffle) {
Status rc;
MS_LOG(INFO) << "UT test TestRepeatShuffle.";
// Start with an empty execution tree
auto my_tree = std::make_shared<ExecutionTree>();
std::string dataset_path;
dataset_path = datasets_root_path_ + "/testDataset1/testDataset1.data";
std::shared_ptr<TFReaderOp> my_tfreader_op;
rc = TFReaderOp::Builder()
.SetDatasetFilesList({dataset_path})
.SetRowsPerBuffer(3)
.SetWorkerConnectorSize(16)
.SetNumWorkers(2)
.Build(&my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
std::shared_ptr<ShuffleOp> my_shuffle_op;
rc = ShuffleOp::Builder()
.SetShuffleSize(4)
.SetShuffleSeed(100)
.SetRowsPerBuffer(3)
.SetReshuffleEachEpoch(true)
.Build(&my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
uint32_t numRepeats = 2;
std::shared_ptr<RepeatOp> my_repeat_op;
rc = RepeatOp::Builder(numRepeats).Build(&my_repeat_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_repeat_op);
EXPECT_TRUE(rc.IsOk());
// Set children/root layout.
rc = my_repeat_op->AddChild(my_shuffle_op);
EXPECT_TRUE(rc.IsOk());
rc = my_shuffle_op->AddChild(my_tfreader_op);
EXPECT_TRUE(rc.IsOk());
rc = my_tree->AssignRoot(my_repeat_op);
EXPECT_TRUE(rc.IsOk());
MS_LOG(INFO) << "Launching tree and begin iteration.";
rc = my_tree->Prepare();
EXPECT_TRUE(rc.IsOk());
rc = my_tree->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree);
TensorRow tensor_list;
rc = di.FetchNextTensorRow(&tensor_list);
EXPECT_TRUE(rc.IsOk());
int row_count = 0;
while (!tensor_list.empty()) {
MS_LOG(INFO) << "Row display for row #: " << row_count << ".";
// Display the tensor by calling the printer on it
for (int i = 0; i < tensor_list.size(); i++) {
std::ostringstream ss;
ss << *tensor_list[i] << std::endl;
MS_LOG(INFO) << "Tensor print: " << common::SafeCStr(ss.str()) << ".";
}
rc = di.FetchNextTensorRow(&tensor_list);
EXPECT_TRUE(rc.IsOk());
row_count++;
}
ASSERT_EQ(row_count, 20);
}