mindspore/tests/ut/cpp/dataset/epoch_ctrl_op_test.cc

640 lines
22 KiB
C++

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/core/client.h"
#include "minddata/dataset/engine/datasetops/source/image_folder_op.h"
#include "common/common.h"
#include "gtest/gtest.h"
#include "utils/log_adapter.h"
#include <memory>
using namespace mindspore::dataset;
using mindspore::MsLogLevel::INFO;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
std::shared_ptr<ImageFolderOp> ImageFolder(int64_t num_works, int64_t rows, int64_t conns, std::string path,
bool shuf = false, std::shared_ptr<Sampler> sampler = nullptr,
std::map<std::string, int32_t> map = {}, bool decode = false);
std::shared_ptr<ExecutionTree> Build(std::vector<std::shared_ptr<DatasetOp>> ops);
class MindDataTestEpochCtrlOp : public UT::DatasetOpTesting {
public:
void SetUp() override {
DatasetOpTesting::SetUp();
folder_path = datasets_root_path_ + "/testPK/data";
GlobalInit();
// Start with an empty execution tree
my_tree_ = std::make_shared<ExecutionTree>();
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false)});
rc = my_tree_->Prepare();
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree_);
TensorMap tensor_map;
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
int32_t i = 0;
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
golden_imgs.append((char *) tensor_map["image"]->GetBuffer(), (int64_t) tensor_map["image"]->Size());
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
i++;
}
}
std::shared_ptr<ExecutionTree> my_tree_;
Status rc;
std::string golden_imgs;
std::string folder_path;
int32_t label = 0;
std::string result;
int32_t img_class[4] = {0, 1, 2, 3};
};
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_AutoInjectEpoch) {
MS_LOG(WARNING) << "Doing ImageFolder_AutoInjectEpoch.";
int32_t num_epoch = 2 + std::rand() % 5;
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false)});
rc = my_tree_->Prepare();
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "num_epoch: " << num_epoch;
std::string golden = golden_imgs;
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree_);
TensorMap tensor_map;
uint64_t i = 0;
for (int epoch = 0; epoch < num_epoch; epoch++) {
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_map["image"]->GetBuffer(), (int64_t) tensor_map["image"]->Size());
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
i++;
}
EXPECT_TRUE(result == golden);
result.clear();
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
}
EXPECT_TRUE(i == 44 * num_epoch);
// Try to fetch data beyond the specified number of epochs.
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Epoch) {
MS_LOG(WARNING) << "Doing ImageFolder_Epoch.";
int32_t num_epoch = 2 + std::rand() % 5;
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false)});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "num_epoch: " << num_epoch;
std::string golden = golden_imgs;
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree_);
TensorMap tensor_map;
uint64_t i = 0;
for (int epoch = 0; epoch < num_epoch; epoch++) {
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_map["image"]->GetBuffer(), (int64_t) tensor_map["image"]->Size());
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
i++;
}
EXPECT_TRUE(result == golden);
result.clear();
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
}
EXPECT_TRUE(i == 44 * num_epoch);
// Try to fetch data beyond the specified number of epochs.
rc = di.GetNextAsMap(&tensor_map);
EXPECT_FALSE(rc.IsOk());
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Repeat_Epoch) {
MS_LOG(WARNING) << "Doing ImageFolder_Repeat_Epoch.";
int32_t num_epoch = 2 + std::rand() % 5;
int32_t num_repeats = 2;
std::shared_ptr<RepeatOp> repeat_op;
rc = RepeatOp::Builder(num_repeats).Build(&repeat_op);
EXPECT_TRUE(rc.IsOk());
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false), repeat_op});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". num_repeat: " << num_repeats;
std::string golden = golden_imgs;
for (int i = 1; i < num_repeats; i++) {
golden += golden_imgs;
}
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree_);
TensorMap tensor_map;
uint64_t i = 0;
for (int epoch = 0; epoch < num_epoch; epoch++) {
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_map["image"]->GetBuffer(), (int64_t) tensor_map["image"]->Size());
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
i++;
}
EXPECT_TRUE(result == golden);
result.clear();
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
}
EXPECT_TRUE(i == 44 * num_repeats * num_epoch);
// Try to fetch data beyond the specified number of epochs.
rc = di.GetNextAsMap(&tensor_map);
EXPECT_FALSE(rc.IsOk());
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Repeat_Repeat_Epoch) {
MS_LOG(WARNING) << "Doing ImageFolder_Repeat_Repeat_Epoch.";
int32_t num_epoch = 2 + std::rand() % 5;
int32_t num_repeats = 2;
std::shared_ptr<RepeatOp> repeat_op;
rc = RepeatOp::Builder(num_repeats).Build(&repeat_op);
EXPECT_TRUE(rc.IsOk());
int32_t num_repeats_2 = 3;
std::shared_ptr<RepeatOp> repeat_op_2;
rc = RepeatOp::Builder(num_repeats_2).Build(&repeat_op_2);
EXPECT_TRUE(rc.IsOk());
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false), repeat_op, repeat_op_2});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". num_repeat: " << num_repeats << ". num_repeat_2: " << num_repeats_2;
std::string golden;
for (int j = 0; j < num_repeats_2; j++) {
for (int i = 0; i < num_repeats; i++) {
golden += golden_imgs;
}
}
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree_);
TensorMap tensor_map;
uint64_t i = 0;
for (int epoch = 0; epoch < num_epoch; epoch++) {
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_map["image"]->GetBuffer(), (int64_t) tensor_map["image"]->Size());
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
i++;
}
EXPECT_EQ(result.size(), golden.size());
EXPECT_TRUE(result == golden);
result.clear();
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
}
EXPECT_EQ(i, 44 * num_epoch * num_repeats * num_repeats_2);
// Try to fetch data beyond the specified number of epochs.
rc = di.GetNextAsMap(&tensor_map);
EXPECT_FALSE(rc.IsOk());
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Epoch_Inf) {
MS_LOG(WARNING) << "Doing ImageFolder_Epoch_Inf.";
// if num_epoch == -1, it means infinity.
int32_t num_epoch = -1;
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false)});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree_);
TensorMap tensor_map;
uint64_t i = 0;
// For this test, we stop at stop_at_epoch number.
int32_t stop_at_epoch = 2 + std::rand() % 6;
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". Stop at epoch: " << stop_at_epoch;
for (int epoch = 0; epoch < stop_at_epoch; epoch++) {
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_map["image"]->GetBuffer(), (int64_t) tensor_map["image"]->Size());
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
i++;
}
EXPECT_EQ(result, golden_imgs);
result.clear();
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
}
EXPECT_TRUE(i == 44 * stop_at_epoch);
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Repeat_Repeat_Epoch_Inf) {
MS_LOG(WARNING) << "Doing ImageFolder_Repeat_Epoch_Inf.";
// if num_epoch == -1, it means infinity.
int32_t num_epoch = -1;
int32_t num_repeats = 2;
std::shared_ptr<RepeatOp> repeat_op;
rc = RepeatOp::Builder(num_repeats).Build(&repeat_op);
EXPECT_TRUE(rc.IsOk());
int32_t num_repeats_2 = 3;
std::shared_ptr<RepeatOp> repeat_op_2;
rc = RepeatOp::Builder(num_repeats_2).Build(&repeat_op_2);
EXPECT_TRUE(rc.IsOk());
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false), repeat_op, repeat_op_2});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". num_repeat: " << num_repeats << ". num_repeat_2: " << num_repeats_2;
std::string golden;
for (int j = 0; j < num_repeats_2; j++) {
for (int i = 0; i < num_repeats; i++) {
golden += golden_imgs;
}
}
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree_);
TensorMap tensor_map;
uint64_t i = 0;
// For this test, we stop at stop_at_epoch number.
int32_t stop_at_epoch = 2 + std::rand() % 6;
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". Stop at epoch: " << stop_at_epoch;
for (int epoch = 0; epoch < stop_at_epoch; epoch++) {
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_map["image"]->GetBuffer(), (int64_t) tensor_map["image"]->Size());
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
i++;
}
EXPECT_EQ(result, golden);
result.clear();
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
}
EXPECT_TRUE(i == 44 * stop_at_epoch * num_repeats * num_repeats_2);
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Epoch_ChildItr) {
MS_LOG(WARNING) << "Doing ImageFolder_Epoch_ChildItr.";
int32_t num_epoch = 2 + std::rand() % 5;
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false)});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
MS_LOG(INFO) << "num_epoch: " << num_epoch;
// Start the loop of reading tensors from our pipeline
ChildIterator ci(my_tree_->root().get(), 0, 0);
TensorRow tensor_row;
uint64_t total_sample = 0;
uint64_t i = 0;
uint32_t epoch = 0;
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
while(!ci.eof_handled()) {
i = 0;
while (tensor_row.size() != 0) {
tensor_row[1]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_row[0]->GetBuffer(), (int64_t) tensor_row[0]->Size());
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
i++;
}
epoch++;
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
EXPECT_TRUE(result == golden_imgs);
result.clear();
EXPECT_TRUE(i == 44);
total_sample += i;
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
}
EXPECT_TRUE(total_sample == 44 * num_epoch);
// Try to fetch data after last epoch ends.
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(tensor_row.empty());
EXPECT_FALSE(rc.IsOk());
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Repeat_Epoch_ChildItr) {
MS_LOG(WARNING) << "Doing ImageFolder_Repeat_Epoch_ChildItr.";
int32_t num_epoch = 2 + std::rand() % 5;
int32_t num_repeats = 2;
std::shared_ptr<RepeatOp> repeat_op;
rc = RepeatOp::Builder(num_repeats).Build(&repeat_op);
EXPECT_TRUE(rc.IsOk());
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false), repeat_op});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". num_repeat: " << num_repeats;
std::string golden;
for (int i = 0; i < num_repeats; i++) {
golden += golden_imgs;
}
// Start the loop of reading tensors from our pipeline
ChildIterator ci(my_tree_->root().get(), 0, 0);
TensorRow tensor_row;
uint64_t total_sample = 0;
uint64_t i = 0;
uint32_t epoch = 0;
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
while(!ci.eof_handled()) {
i = 0;
while (tensor_row.size() != 0) {
tensor_row[1]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_row[0]->GetBuffer(), (int64_t) tensor_row[0]->Size());
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
i++;
}
epoch++;
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
EXPECT_TRUE(result == golden);
result.clear();
EXPECT_TRUE(i == 44 * num_repeats);
total_sample += i;
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
}
EXPECT_TRUE(total_sample == 44 * num_epoch * num_repeats);
// Try to fetch data after last epoch ends.
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(tensor_row.empty());
EXPECT_FALSE(rc.IsOk());
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Repeat_Repeat_Epoch_ChildItr) {
MS_LOG(WARNING) << "Doing ImageFolder_Repeat_Repeat_Epoch_ChildItr.";
int32_t num_epoch = 2 + std::rand() % 5;
int32_t num_repeats = 2;
std::shared_ptr<RepeatOp> repeat_op;
rc = RepeatOp::Builder(num_repeats).Build(&repeat_op);
EXPECT_TRUE(rc.IsOk());
int32_t num_repeats_2 = 3;
std::shared_ptr<RepeatOp> repeat_op_2;
rc = RepeatOp::Builder(num_repeats_2).Build(&repeat_op_2);
EXPECT_TRUE(rc.IsOk());
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false), repeat_op, repeat_op_2});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". num_repeat: " << num_repeats << ". num_repeat_2: " << num_repeats_2;
std::string golden;
for (int j = 0; j < num_repeats_2; j++) {
for (int i = 0; i < num_repeats; i++) {
golden += golden_imgs;
}
}
// Start the loop of reading tensors from our pipeline
ChildIterator ci(my_tree_->root().get(), 0, 0);
TensorRow tensor_row;
uint64_t total_sample = 0;
uint64_t i = 0;
uint32_t epoch = 0;
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
while(!ci.eof_handled()) {
i = 0;
while (tensor_row.size() != 0) {
tensor_row[1]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_row[0]->GetBuffer(), (int64_t) tensor_row[0]->Size());
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
i++;
}
epoch++;
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
EXPECT_TRUE(result == golden);
result.clear();
EXPECT_TRUE(i == 44 * num_repeats * num_repeats_2);
total_sample += i;
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
}
EXPECT_TRUE(total_sample == 44 * num_epoch * num_repeats * num_repeats_2);
// Try to fetch data after last epoch ends.
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(tensor_row.empty());
EXPECT_FALSE(rc.IsOk());
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Epoch_Inf_ChildItr) {
MS_LOG(WARNING) << "Doing ImageFolder_Epoch_Inf_ChildItr.";
// if num_epoch == -1, it means infinity.
int32_t num_epoch = -1;
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false)});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
ChildIterator ci(my_tree_->root().get(), 0, 0);
TensorRow tensor_row;
uint64_t i = 0;
// For this test, we stop at a random number between 0 - 100 epochs.
int32_t stop_at_epoch = 2 + std::rand() % 5;
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". Stop at epoch: " << stop_at_epoch;
for (int epoch = 0; epoch < stop_at_epoch; epoch++) {
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
while (tensor_row.size() != 0) {
tensor_row[1]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_row[0]->GetBuffer(), (int64_t) tensor_row[0]->Size());
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
i++;
}
EXPECT_TRUE(result == golden_imgs);
result.clear();
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
}
EXPECT_TRUE(i == 44 * stop_at_epoch);
}
TEST_F(MindDataTestEpochCtrlOp, ImageFolder_Repeat_Epoch_Inf_ChildItr) {
MS_LOG(WARNING) << "Doing ImageFolder_Repeat_Epoch_Inf_ChildItr.";
// if num_epoch == -1, it means infinity.
int32_t num_epoch = -1;
int32_t num_repeats = 2;
std::shared_ptr<RepeatOp> repeat_op;
rc = RepeatOp::Builder(num_repeats).Build(&repeat_op);
EXPECT_TRUE(rc.IsOk());
my_tree_ = Build({ImageFolder(2, 2, 32, folder_path, false), repeat_op});
rc = my_tree_->Prepare(num_epoch);
EXPECT_TRUE(rc.IsOk());
rc = my_tree_->Launch();
EXPECT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". num_repeat: " << num_repeats;
std::string golden;
for (int i = 0; i < num_repeats; i++) {
golden += golden_imgs;
}
// Start the loop of reading tensors from our pipeline
ChildIterator ci(my_tree_->root().get(), 0, 0);
TensorRow tensor_row;
uint64_t i = 0;
// For this test, we stop at a random number between 0 - 100 epochs.
int32_t stop_at_epoch = 2 + std::rand() % 5;
MS_LOG(DEBUG) << "num_epoch: " << num_epoch << ". Stop at epoch: " << stop_at_epoch;
for (int epoch = 0; epoch < stop_at_epoch; epoch++) {
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
while (tensor_row.size() != 0) {
tensor_row[1]->GetItemAt<int32_t>(&label, {});
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
EXPECT_TRUE(img_class[(i % 44) / 11] == label);
// Dump all the image into string, to be used as a comparison later.
result.append((char *) tensor_row[0]->GetBuffer(), (int64_t) tensor_row[0]->Size());
rc = ci.FetchNextTensorRow(&tensor_row);
EXPECT_TRUE(rc.IsOk());
i++;
}
EXPECT_TRUE(result == golden);
result.clear();
MS_LOG(DEBUG) << "Current epoch: " << epoch << ". Sample count: " << i;
}
EXPECT_TRUE(i == 44 * stop_at_epoch * num_repeats);
}