mindspore/tests/st/networks/test_gpu_lstm.py

146 lines
5.4 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.nn import Dense
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
def InitialLstmWeight(input_size, hidden_size, num_layers, bidirectional, has_bias=False):
num_directions = 1
if bidirectional:
num_directions = 2
weight_size = 0
gate_size = 4 * hidden_size
for layer in range(num_layers):
for d in range(num_directions):
input_layer_size = input_size if layer == 0 else hidden_size * num_directions
weight_size += gate_size * input_layer_size
weight_size += gate_size * hidden_size
if has_bias:
weight_size += 2 * gate_size
w_np = np.ones([weight_size, 1, 1]).astype(np.float32) * 0.01
w = Parameter(initializer(Tensor(w_np), w_np.shape), name='w')
h = Parameter(initializer(
Tensor(np.ones((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32)),
[num_layers * num_directions, batch_size, hidden_size]), name='h')
c = Parameter(initializer(
Tensor(np.ones((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32)),
[num_layers * num_directions, batch_size, hidden_size]), name='c')
return h, c, w
class SentimentNet(nn.Cell):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
bidirectional, weight, labels, batch_size):
super(SentimentNet, self).__init__()
self.num_hiddens = num_hiddens
self.num_layers = num_layers
self.bidirectional = bidirectional
self.batch_size = batch_size
self.embedding = nn.Embedding(vocab_size, embed_size, use_one_hot=False, embedding_table=Tensor(weight))
self.embedding.embedding_table.requires_grad = False
self.trans = P.Transpose()
self.perm = (1, 0, 2)
self.h, self.c, self.w = InitialLstmWeight(embed_size, num_hiddens, num_layers, bidirectional)
self.encoder = P.LSTM(input_size=embed_size, hidden_size=self.num_hiddens,
num_layers=num_layers, has_bias=False,
bidirectional=self.bidirectional, dropout=0.0)
self.concat = P.Concat(2)
if self.bidirectional:
self.decoder = nn.Dense(num_hiddens * 4, labels)
else:
self.decoder = nn.Dense(num_hiddens * 2, labels)
self.slice1 = P.Slice()
self.slice2 = P.Slice()
self.reshape = P.Reshape()
self.num_direction = 1
if bidirectional:
self.num_direction = 2
def construct(self, inputs):
embeddings = self.embedding(inputs)
embeddings = self.trans(embeddings, self.perm)
output, hidden = self.encoder(embeddings, self.h, self.c, self.w)
output0 = self.slice1(output, (0, 0, 0), (1, 64, 200))
output1 = self.slice2(output, (499, 0, 0), (1, 64, 200))
encoding = self.concat((output0, output1))
encoding = self.reshape(encoding, (self.batch_size, self.num_hiddens * self.num_direction * 2))
outputs = self.decoder(encoding)
return outputs
batch_size = 64
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_LSTM():
num_epochs = 5
embed_size = 100
num_hiddens = 100
num_layers = 2
bidirectional = True
labels = 2
vocab_size = 252193
max_len = 500
weight = np.ones((vocab_size + 1, embed_size)).astype(np.float32)
net = SentimentNet(vocab_size=(vocab_size + 1), embed_size=embed_size,
num_hiddens=num_hiddens, num_layers=num_layers,
bidirectional=bidirectional, weight=weight,
labels=labels, batch_size=batch_size)
learning_rate = 0.1
momentum = 0.9
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
train_network.set_train()
train_features = Tensor(np.ones([64, max_len]).astype(np.int32))
train_labels = Tensor(np.ones([64,]).astype(np.int32)[0:64])
losses = []
for epoch in range(num_epochs):
loss = train_network(train_features, train_labels)
losses.append(loss)
print("loss:", loss.asnumpy())
assert (losses[-1].asnumpy() < 0.01)