forked from mindspore-Ecosystem/mindspore
101 lines
3.1 KiB
Python
101 lines
3.1 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" test_training """
|
|
import os
|
|
|
|
from mindspore import Model, context
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
|
|
|
|
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
|
|
from src.callbacks import LossCallBack, EvalCallBack
|
|
from src.datasets import create_dataset
|
|
from src.metrics import AUCMetric
|
|
from src.config import WideDeepConfig
|
|
|
|
|
|
def get_WideDeep_net(config):
|
|
"""
|
|
Get network of wide&deep model.
|
|
"""
|
|
WideDeep_net = WideDeepModel(config)
|
|
|
|
loss_net = NetWithLossClass(WideDeep_net, config)
|
|
train_net = TrainStepWrap(loss_net)
|
|
eval_net = PredictWithSigmoid(WideDeep_net)
|
|
|
|
return train_net, eval_net
|
|
|
|
|
|
class ModelBuilder():
|
|
"""
|
|
ModelBuilder
|
|
"""
|
|
def __init__(self):
|
|
pass
|
|
|
|
def get_hook(self):
|
|
pass
|
|
|
|
def get_train_hook(self):
|
|
hooks = []
|
|
callback = LossCallBack()
|
|
hooks.append(callback)
|
|
|
|
if int(os.getenv('DEVICE_ID')) == 0:
|
|
pass
|
|
return hooks
|
|
|
|
def get_net(self, config):
|
|
return get_WideDeep_net(config)
|
|
|
|
|
|
def test_train_eval(config):
|
|
"""
|
|
test_train_eval
|
|
"""
|
|
data_path = config.data_path
|
|
batch_size = config.batch_size
|
|
epochs = config.epochs
|
|
ds_train = create_dataset(data_path, train_mode=True, epochs=1, batch_size=batch_size)
|
|
ds_eval = create_dataset(data_path, train_mode=False, epochs=1, batch_size=batch_size)
|
|
print("ds_train.size: {}".format(ds_train.get_dataset_size()))
|
|
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
|
|
|
|
net_builder = ModelBuilder()
|
|
|
|
train_net, eval_net = net_builder.get_net(config)
|
|
train_net.set_train()
|
|
auc_metric = AUCMetric()
|
|
|
|
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
|
|
|
|
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
|
|
|
|
callback = LossCallBack(config=config)
|
|
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
|
|
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', directory=config.ckpt_path, config=ckptconfig)
|
|
|
|
out = model.eval(ds_eval)
|
|
print("=====" * 5 + "model.eval() initialized: {}".format(out))
|
|
model.train(epochs, ds_train,
|
|
callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback, ckpoint_cb])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
wide_deep_config = WideDeepConfig()
|
|
wide_deep_config.argparse_init()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=wide_deep_config.device_target)
|
|
test_train_eval(wide_deep_config)
|