mindspore/model_zoo/research/cv/ICNet/eval.py

178 lines
6.9 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluate mIou and Pixacc"""
import os
import time
import sys
import argparse
import yaml
import numpy as np
from PIL import Image
import mindspore.ops as ops
from mindspore import load_param_into_net
from mindspore import load_checkpoint
from mindspore import Tensor
import mindspore.dataset.vision.py_transforms as transforms
parser = argparse.ArgumentParser(description="ICNet Evaluation")
parser.add_argument("--dataset_path", type=str, default="/data/cityscapes/", help="dataset path")
parser.add_argument("--checkpoint_path", type=str, default="/root/ICNet/ckpt/ICNet-160_93_699.ckpt",
help="checkpoint_path, default67.7")
parser.add_argument("--project_path", type=str, default='/root/ICNet/',
help="project_path,default is /root/ICNet/")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
args_opt = parser.parse_args()
class Evaluator:
"""evaluate"""
def __init__(self, config):
self.cfg = config
# get valid dataset images and targets
self.image_paths, self.mask_paths = _get_city_pairs(config["train"]["cityscapes_root"], "val")
# create network
self.model = ICNet(nclass=19, pretrained_path=cfg["train"]["pretrained_model_path"], istraining=False)
# load ckpt
ckpt_file_name = args_opt.checkpoint_path
param_dict = load_checkpoint(ckpt_file_name)
load_param_into_net(self.model, param_dict)
# evaluation metrics
self.metric = SegmentationMetric(19)
def eval(self):
"""evaluate"""
self.metric.reset()
model = self.model
model = model.set_train(False)
logger.info("Start validation, Total sample: {:d}".format(len(self.image_paths)))
list_time = []
for i in range(len(self.image_paths)):
image = Image.open(self.image_paths[i]).convert('RGB') # image shape: (W,H,3)
mask = Image.open(self.mask_paths[i]) # mask shape: (W,H)
image = self._img_transform(image) # image shape: (3,H,W) [0,1]
mask = self._mask_transform(mask) # mask shape: (H,w)
image = Tensor(image)
print(image)
expand_dims = ops.ExpandDims()
image = expand_dims(image, 0)
start_time = time.time()
output = model(image)
end_time = time.time()
step_time = end_time - start_time
expand_dims = ops.ExpandDims()
mask = expand_dims(mask, 0)
self.metric.update(output, mask)
list_time.append(step_time)
pixAcc, mIoU = self.metric.get()
average_time = sum(list_time) / len(list_time)
print("avgmiou", mIoU)
print("avg_pixacc", pixAcc)
print("avgtime", average_time)
def _img_transform(self, image):
"""img_transform"""
to_tensor = transforms.ToTensor()
normalize = transforms.Normalize([.485, .456, .406], [.229, .224, .225])
image = to_tensor(image)
image = normalize(image)
return image
def _mask_transform(self, mask):
mask = self._class_to_index(np.array(mask).astype('int32'))
return Tensor(np.array(mask).astype('int32')) # torch.LongTensor
def _class_to_index(self, mask):
"""assert the value"""
values = np.unique(mask)
self._key = np.array([-1, -1, -1, -1, -1, -1,
-1, -1, 0, 1, -1, -1,
2, 3, 4, -1, -1, -1,
5, -1, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15,
-1, -1, 16, 17, 18])
self._mapping = np.array(range(-1, len(self._key) - 1)).astype('int32')
for value in values:
assert value in self._mapping
# Get the index of each pixel value in the mask corresponding to _mapping
index = np.digitize(mask.ravel(), self._mapping, right=True)
# According to the above index index, according to _key, the corresponding mask image is obtained
return self._key[index].reshape(mask.shape)
def _get_city_pairs(folder, split='train'):
"""get dataset img_mask_path_pairs"""
def get_path_pairs(image_folder, mask_folder):
img_paths = []
mask_paths = []
for root, _, files in os.walk(image_folder):
for filename in files:
if filename.endswith('.png'):
imgpath = os.path.join(root, filename)
foldername = os.path.basename(os.path.dirname(imgpath))
maskname = filename.replace('leftImg8bit', 'gtFine_labelIds')
maskpath = os.path.join(mask_folder, foldername, maskname)
if os.path.isfile(imgpath) and os.path.isfile(maskpath):
img_paths.append(imgpath)
mask_paths.append(maskpath)
else:
print('cannot find the mask or image:', imgpath, maskpath)
print('Found {} images in the folder {}'.format(len(img_paths), image_folder))
return img_paths, mask_paths
if split in ('train', 'val', 'test'):
# "./Cityscapes/leftImg8bit/train" or "./Cityscapes/leftImg8bit/val"
img_folder = os.path.join(folder, 'leftImg8bit/' + split)
# "./Cityscapes/gtFine/train" or "./Cityscapes/gtFine/val"
mask_folder = os.path.join(folder, 'gtFine/' + split)
img_paths, mask_paths = get_path_pairs(img_folder, mask_folder)
return img_paths, mask_paths
if __name__ == '__main__':
sys.path.append(args_opt.project_path)
from src.models import ICNet
from src.metric import SegmentationMetric
from src.logger import SetupLogger
# Set config file
config_file = "src/model_utils/icnet.yaml"
config_path = os.path.join(args_opt.project_path, config_file)
with open(config_path, "r") as yaml_file:
cfg = yaml.load(yaml_file.read())
logger = SetupLogger(name="semantic_segmentation",
save_dir=cfg["train"]["ckpt_dir"],
distributed_rank=0,
filename='{}_{}_evaluate_log.txt'.format(cfg["model"]["name"], cfg["model"]["backbone"]))
evaluator = Evaluator(cfg)
evaluator.eval()