forked from mindspore-Ecosystem/mindspore
162 lines
5.8 KiB
Python
162 lines
5.8 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import mindspore.nn as nn
|
|
from mindspore.ops import operations as P
|
|
from mindspore import Tensor
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
import mindspore as ms
|
|
from mindspore.common.api import _executor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.common.parameter import Parameter, ParameterTuple
|
|
from mindspore.ops.operations.comm_ops import _VirtualDataset
|
|
from mindspore import context
|
|
from mindspore.common.initializer import initializer
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network, types, shapes, output_num, strategy3=None, strategy4=None, axis=-1):
|
|
super(NetWithLoss, self).__init__()
|
|
self.get_next = P.GetNext(types, shapes, output_num, "")
|
|
self.one_hot = P.OneHot(axis=axis).set_strategy(strategy3)
|
|
self.on_value = Tensor(1.0, ms.float32)
|
|
self.off_value = Tensor(0.0, ms.float32)
|
|
self.loss = P.SoftmaxCrossEntropyWithLogits().set_strategy(strategy4)
|
|
self.network = network
|
|
|
|
def construct(self):
|
|
data, label = self.get_next()
|
|
predict = self.network(data)
|
|
label = self.one_hot(label, 64, self.on_value, self.off_value)
|
|
return self.loss(predict, label)[0]
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
self.weights = ParameterTuple(network.trainable_params())
|
|
|
|
def construct(self):
|
|
return C.grad_by_list(self.network, self.weights)()
|
|
|
|
|
|
def compile(net):
|
|
net.set_auto_parallel()
|
|
_executor.compile(net)
|
|
|
|
|
|
def test_get_next_single():
|
|
class Net(nn.Cell):
|
|
def __init__(self, channel=1, w=0.25):
|
|
super().__init__()
|
|
self.norm = P.L2Normalize(axis=1)
|
|
self.prelu = P.PReLU()
|
|
self.w = Parameter(initializer(w, [channel, ]), name='w')
|
|
|
|
def construct(self, data):
|
|
x = self.norm(data)
|
|
x = self.prelu(x, self.w)
|
|
return x
|
|
|
|
net = GradWrap(NetWithLoss(Net(), [ms.float32, ms.int32], [[32, 64], [32]], 2))
|
|
_executor.compile(net)
|
|
|
|
|
|
def test_get_next_semi_auto_parallel():
|
|
class Net(nn.Cell):
|
|
def __init__(self, channel=1, w=0.25, strategy1=None, strategy2=None):
|
|
super().__init__()
|
|
self.norm = P.L2Normalize().set_strategy(strategy1)
|
|
self.prelu = P.PReLU().set_strategy(strategy2)
|
|
self.w = Parameter(initializer(w, [channel, ]), name='w')
|
|
|
|
def construct(self, data):
|
|
x = self.norm(data)
|
|
x = self.prelu(x, self.w)
|
|
return x
|
|
|
|
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
|
network = Net(strategy1=((1, 4),), strategy2=((4, 1), (1,)))
|
|
strategy3 = ((4, 1), (), ())
|
|
strategy4 = ((4, 1), (4, 1))
|
|
net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2, strategy3=strategy3,
|
|
strategy4=strategy4)
|
|
net = GradWrap(net_with_loss)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
compile(net)
|
|
|
|
|
|
def test_get_next_semi_auto_parallel1():
|
|
class Net(nn.Cell):
|
|
def __init__(self, channel=1, w=0.25, strategy1=None, strategy2=None):
|
|
super().__init__()
|
|
self.norm = P.L2Normalize().set_strategy(strategy1)
|
|
self.prelu = P.PReLU().set_strategy(strategy2)
|
|
self.w = Parameter(initializer(w, [channel, ]), name='w')
|
|
|
|
def construct(self, data):
|
|
x = self.norm(data)
|
|
x = self.prelu(x, self.w)
|
|
return x
|
|
|
|
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
|
network = Net(strategy1=((1, 4),), strategy2=((4, 1), (1,)))
|
|
strategy3 = ((1, 4), (), ())
|
|
strategy4 = ((4, 1), (4, 1))
|
|
net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2, strategy3=strategy3,
|
|
strategy4=strategy4)
|
|
net = GradWrap(net_with_loss)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
compile(net)
|
|
|
|
|
|
def test_get_next_auto_parallel():
|
|
class Net(nn.Cell):
|
|
def __init__(self, channel=1, w=0.25, strategy1=None, strategy2=None):
|
|
super().__init__()
|
|
self.norm = P.L2Normalize().set_strategy(strategy1)
|
|
self.prelu = P.PReLU().set_strategy(strategy2)
|
|
self.w = Parameter(initializer(w, [channel, ]), name='w')
|
|
|
|
def construct(self, data):
|
|
x = self.norm(data)
|
|
x = self.prelu(x, self.w)
|
|
return x
|
|
|
|
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
|
network = Net()
|
|
net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2)
|
|
net = GradWrap(net_with_loss)
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
compile(net)
|
|
|
|
|
|
def test_only_one_get_next():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.get_next = P.GetNext([ms.float32, ms.int32], [[32, 64], [32]], 2, "")
|
|
|
|
def construct(self):
|
|
return self.get_next()
|
|
|
|
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
|
net = Net()
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
compile(net)
|