mindspore/tests/ut/python/ops/test_ops_reid.py

174 lines
6.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test Activations """
import functools
import numpy as np
from mindspore.ops import operations as P
import mindspore.nn as nn
from ....ops_common import convert
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
class SeqConvBnRelu(nn.Cell):
""" SeqConvBnRelu definition """
def __init__(self, in_ch, out_ch):
super(SeqConvBnRelu, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 3)
self.bn = nn.BatchNorm2d(out_ch)
self.relu = P.ReLU()
def construct(self, input_x):
return self.relu(self.bn(self.conv(input_x)))
test_case_reid_ops = [
('ReduceMax', {
'block': P.ReduceMax(keep_dims=False),
'desc_const': [(1,)],
'desc_inputs': [convert([32, 32], np.float16)],
'desc_bprop': [convert([32], np.float16)],
'skip': []}),
('ReduceMin', {
'block': P.ReduceMin(),
'desc_const': [(1,)],
'desc_inputs': [[32, 32]],
'desc_bprop': [[32]],
'skip': []}),
('ReduceMean', {
'block': P.ReduceMean(keep_dims=True),
'desc_const': [(1, 2)],
'desc_inputs': [[32, 4, 4]],
'desc_bprop': [[32, 1, 1]]}),
('Log', {
'block': P.Log(),
'desc_inputs': [[4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]],
'skip': ['backward']}), # check backward error
('Reciprocal', {
'block': P.Reciprocal(),
'desc_inputs': [[4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]],
'skip': ['backward']}),
('FloorDiv', {
'block': P.FloorDiv(),
'desc_inputs': [[4, 128, 1024], [4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]]}),
('Sigmoid', {
'block': P.Sigmoid(),
'desc_inputs': [[4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]]}),
('Softmax', {
'block': P.Softmax(),
'desc_inputs': [[1, 16]],
'desc_bprop': [[1, 16]],
'skip': ['backward']}), # check backward error
('Softmax', {
'block': P.Softmax(axis=(0, 1)),
'desc_inputs': [[1, 16]],
'desc_bprop': [[1, 16]],
'skip': ['backward']}),
('L2Normalize', {
'block': P.L2Normalize(),
'desc_inputs': [[4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]]}),
('ReLU', {
'block': P.ReLU(),
'desc_inputs': [[64, 64, 112, 112]],
'desc_bprop': [[64, 64, 112, 112]]}),
('SeqConvBnRelu', {
'block': SeqConvBnRelu(3, 64),
'desc_inputs': [[64, 3, 112, 112]],
'desc_bprop': [[64, 64, 112, 112]]}),
('PReluCell', {
'block': nn.PReLU(1, [np.float32(0.25)]),
'desc_inputs': [[128, 64, 112, 112]],
'desc_bprop': [[128, 64, 112, 112]]}),
('PRelu', {
'block': P.PReLU(),
'desc_inputs': [[128, 64, 112, 112], [64, ]],
'desc_bprop': [[128, 64, 112, 112]]}),
('Cos', {
'block': P.Cos(),
'desc_inputs': [[8, 16]],
'desc_bprop': [[8, 16]]}),
('ACos', {
'block': P.ACos(),
'desc_inputs': [[8, 16]],
'desc_bprop': [[8, 16]]}),
('Exp', {
'block': P.Exp(),
'desc_inputs': [[256, 8]],
'desc_bprop': [[256, 8]]}),
('Pow', {
'block': P.Pow(), # 输入有标量插件产生了段错误。
'desc_const': [2.0],
'desc_inputs': [[1, 512]],
'desc_bprop': [[1, 512]]}),
('LogicalNot', {
'block': P.LogicalNot(),
'desc_inputs': [convert([256], np.bool_)],
'desc_bprop': [[256]]}), # 自定义算子 input bool没转换gongchen提单。
('Equal', {
'block': P.Equal(),
'desc_inputs': [convert([256], np.float16), convert([256], np.float16)],
'desc_bprop': [[256]]}),
('Greater', {
'block': P.Greater(),
'desc_inputs': [convert([256], np.float16), convert([256], np.float16)],
'desc_bprop': [[256]]}),
('Dropout', {
'block': nn.Dropout(),
'desc_inputs': [[1, 512, 7, 7]],
'desc_bprop': [[1, 512, 7, 7]]}), # 输入有标量插件产生了段错误。
('MatMul', {
'block': P.MatMul(),
'desc_inputs': [[64, 512], [512, 64]], # fp16不行。很有问题。
'desc_bprop': [[64, 64]]}),
('Maximum', {
'block': P.Maximum(),
'desc_inputs': [[64, 1], [64, 1]],
'desc_bprop': [[64, 1]]}),
]
test_case_lists = [test_case_reid_ops]
test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# use -k to select certain testcast
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
test_exec_case = filter(lambda x: 'skip' not in x[1] or
'exec' not in x[1]['skip'], test_case)
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
'backward' not in x[1]['skip'] and 'backward_exec'
not in x[1]['skip'], test_case)
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
return test_exec_case
@mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
def test_backward_exec():
return test_backward_exec_case