mindspore/tests/ut/python/ops/test_math_ops.py

464 lines
13 KiB
Python
Executable File

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test math ops """
import functools
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore.common.api import _executor
from mindspore.common import dtype as mstype
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.ops import functional as F
import mindspore.context as context
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
from ....mindspore_test_framework.pipeline.forward.verify_exception \
import pipeline_for_verify_exception_for_case_by_case_config
import pytest
# pylint: disable=W0613
# pylint: disable=W0231
# W0613: unused-argument
# W0231: super-init-not-called
def test_multiply():
""" test_multiply """
input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
input_y = Tensor(np.array([[0.1, 0.3, -3.6], [0.4, 0.5, -3.2]]))
mul = P.Mul()
result = mul(input_x, input_y)
expect = np.array([[-0.01, 0.09, -12.96], [0.16, 0.25, 10.24]])
diff = result.asnumpy() - expect
error = np.ones(shape=[2, 3]) * 1.0e-6
assert np.all(diff < error)
assert np.all(-diff < error)
def test_sub():
""" test_sub """
input_x = Tensor(np.ones(shape=[3]))
input_y = Tensor(np.zeros(shape=[3]))
sub = P.Sub()
result = sub(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result.asnumpy() == expect)
def test_square():
""" test_square """
input_tensor = Tensor(np.array([[1, 2, 3], [4, 5, 6]]))
square = P.Square()
result = square(input_tensor)
expect = np.array([[1, 4, 9], [16, 25, 36]])
assert np.all(result.asnumpy() == expect)
def test_sqrt():
""" test_sqrt """
input_tensor = Tensor(np.array([[4, 4], [9, 9]]))
sqrt = P.Sqrt()
expect = np.array([[2, 2], [3, 3]])
result = sqrt(input_tensor)
assert np.all(result.asnumpy() == expect)
class PowNet(nn.Cell):
def __init__(self):
super(PowNet, self).__init__()
self.pow = P.Pow()
def construct(self, x, y):
return self.pow(x, y)
def test_pow():
""" test_pow """
input_tensor = Tensor(np.array([[2, 2], [3, 3]]))
power = Tensor(np.array(3.0, np.int64))
power2 = Tensor(np.array(True, np.bool))
testpow = P.Pow()
expect = np.array([[8, 8], [27, 27]])
result = testpow(input_tensor, power)
assert np.all(result.asnumpy() == expect)
net = PowNet()
with pytest.raises(TypeError):
net(input_tensor, True)
with pytest.raises(TypeError):
net(input_tensor, power2)
def test_exp():
""" test_exp """
input_tensor = Tensor(np.array([[2, 2], [3, 3]]))
testexp = P.Exp()
result = testexp(input_tensor)
expect = np.exp(np.array([[2, 2], [3, 3]]))
assert np.all(result.asnumpy() == expect)
def test_realdiv():
""" test_realdiv """
x = Tensor(2048.0)
y = Tensor(128.0)
div = P.RealDiv()
result = div(x, y)
x = x.asnumpy()
y = y.asnumpy()
expect = x / y
assert np.all(result.asnumpy() == expect)
def test_eye():
""" test_eye """
x = np.arange(3)
expect = np.ones_like(x)
expect = np.diag(expect)
eye = P.Eye()
eye_output = eye(3, 3, ms.float32)
assert np.all(eye_output.asnumpy() == expect)
class VirtualLossGrad(PrimitiveWithInfer):
""" VirtualLossGrad definition """
@prim_attr_register
def __init__(self):
"""init VirtualLossGrad"""
def __call__(self, x, out, dout):
raise NotImplementedError
def infer_shape(self, x_shape, out_shape, dout_shape):
return x_shape
def infer_dtype(self, x_dtype, out_dtype, dout_dtype):
return x_dtype
class VirtualLoss(PrimitiveWithInfer):
""" VirtualLoss definition """
@prim_attr_register
def __init__(self):
"""init VirtualLoss"""
def __call__(self, x):
raise NotImplementedError
def get_bprop(self):
loss_grad = VirtualLossGrad()
def bprop(x, out, dout):
dx = loss_grad(x, out, dout)
return (dx,)
return bprop
def infer_shape(self, x_shape):
return [1]
def infer_dtype(self, x_dtype):
return x_dtype
class NetWithLoss(nn.Cell):
""" NetWithLoss definition """
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
""" GradWrap definition """
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return C.grad(self.network)(x, y, b)
class MatMulNet(nn.Cell):
""" MatMulNet definition """
def __init__(self):
super(MatMulNet, self).__init__()
self.matmul = P.MatMul()
self.biasAdd = P.BiasAdd()
def construct(self, x, y, b):
return self.biasAdd(self.matmul(x, y), b)
class NetWithLossSub(nn.Cell):
""" NetWithLossSub definition """
def __init__(self, network):
super(NetWithLossSub, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y):
predict = self.network(x, y)
return self.loss(predict)
class GradWrapSub(nn.Cell):
""" GradWrapSub definition """
def __init__(self, network):
super(GradWrapSub, self).__init__()
self.network = network
def construct(self, x, y):
return C.grad(self.network)(x, y)
class SubNet(nn.Cell):
""" SubNet definition """
def __init__(self):
super(SubNet, self).__init__()
self.sub = P.Sub()
def construct(self, x, y):
return self.sub(x, y)
class NpuFloatNet(nn.Cell):
""" NpuFloat definition """
def __init__(self):
super(NpuFloatNet, self).__init__()
self.mul = P.Mul()
self.alloc_status = P.NPUAllocFloatStatus()
self.get_status = P.NPUGetFloatStatus()
self.clear_status = P.NPUClearFloatStatus()
self.fill = P.Fill()
self.shape_op = P.Shape()
self.select = P.Select()
self.less = P.Less()
self.cast = P.Cast()
self.dtype = P.DType()
self.reduce_sum = P.ReduceSum(keep_dims=True)
self.sub = P.Sub()
self.neg = P.Neg()
self.add_flags(has_effect=True)
def construct(self, x):
init = self.alloc_status()
self.clear_status(init)
res = self.sub(x, self.neg(x))
self.get_status(init)
flag_sum = self.reduce_sum(init, (0,))
base = self.cast(self.fill(self.dtype(res), self.shape_op(res), 0.0), self.dtype(flag_sum))
cond = self.less(base, flag_sum)
out = self.select(cond, self.cast(base, self.dtype(res)), res)
return out
class DiagNet(nn.Cell):
""" DiagNet definition """
def __init__(self):
super(DiagNet, self).__init__()
self.fill = P.Fill()
self.diag = P.Diag()
def construct(self, x):
return x - self.diag(self.fill(mstype.float32, (3,), 1.0))
class NetWithLossCumSum(nn.Cell):
""" NetWithLossCumSum definition """
def __init__(self, network):
super(NetWithLossCumSum, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, input):
predict = self.network(input)
return self.loss(predict)
class GradWrapCumSum(nn.Cell):
""" GradWrap definition """
def __init__(self, network):
super(GradWrapCumSum, self).__init__()
self.network = network
def construct(self, input):
return C.grad(self.network)(input)
class NetCumSum(nn.Cell):
""" NetCumSum definition """
def __init__(self):
super(NetCumSum, self).__init__()
self.cumsum = P.CumSum()
self.axis = 1
def construct(self, input):
return self.cumsum(input, self.axis)
class SignNet(nn.Cell):
def __init__(self):
super(SignNet, self).__init__()
self.sign = P.Sign()
def construct(self, x):
return self.sign(x)
class AssignAdd(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.AssignAdd()
self.inputdata = Parameter(initializer(1, [1], ms.float32), name="global_step")
def construct(self, input_):
self.inputdata = input_
return self.op(self.inputdata, input_)
class FloorNet(nn.Cell):
def __init__(self):
super(FloorNet, self).__init__()
self.floor = P.Floor()
def construct(self, x):
return self.floor(x)
class Log1pNet(nn.Cell):
def __init__(self):
super(Log1pNet, self).__init__()
self.log1p = P.Log1p()
def construct(self, x):
return self.log1p(x)
test_case_math_ops = [
('MatMulGrad', {
'block': GradWrap(NetWithLoss(MatMulNet())),
'desc_inputs': [Tensor(np.ones([3, 3]).astype(np.int32)),
Tensor(np.ones([3, 3]).astype(np.int32)),
Tensor(np.ones([3]).astype(np.int32))],
'desc_bprop': [Tensor(np.ones([3, 3]).astype(np.int32)),
Tensor(np.ones([3, 3]).astype(np.int32)),
Tensor(np.ones([3]).astype(np.int32))],
'skip': ['backward']}),
('CumSumGrad', {
'block': GradWrapCumSum(NetWithLossCumSum(NetCumSum())),
'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))],
'skip': ['backward']}),
('Diag', {
'block': DiagNet(),
'desc_inputs': [Tensor(np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]], np.float32))],
'desc_bprop': [Tensor(np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]], np.float32))],
'skip': ['backward']}),
('SubBroadcast', {
'block': GradWrapSub(NetWithLossSub(SubNet())),
'desc_inputs': [Tensor(np.ones([5, 3])), Tensor(np.ones([8, 5, 3]))],
'desc_bprop': [Tensor(np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]], np.float32))],
'skip': ['backward']}),
('NpuFloat_NotOverflow', {
'block': NpuFloatNet(),
'desc_inputs': [Tensor(np.full((8, 5, 3, 1), 655, dtype=np.float16), dtype=ms.float16)],
'desc_bprop': [Tensor(np.full((8, 5, 3, 1), 655, dtype=np.float16), dtype=ms.float16)],
'skip': ['backward']}),
('NpuFloat_Overflow', {
'block': NpuFloatNet(),
'desc_inputs': [Tensor(np.full((8, 5, 3, 1), 65504, dtype=np.float16), dtype=ms.float16)],
'desc_bprop': [Tensor(np.full((8, 5, 3, 1), 65504, dtype=np.float16), dtype=ms.float16)],
'skip': ['backward']}),
('Sign', {
'block': SignNet(),
'desc_inputs': [Tensor(np.array([[1., 0., -2.]], np.float32))],
'desc_bprop': [Tensor(np.array([[1., 0., -2.]], np.float32))],
'skip': ['backward']}),
('Floor', {
'block': FloorNet(),
'desc_inputs': [Tensor(np.array([[1., 0., -2.]], np.float32))],
'desc_bprop': [Tensor(np.array([[1., 0., -2.]], np.float32))],
'skip': ['backward']}),
('Log1p', {
'block': Log1pNet(),
'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
'skip': ['backward']}),
]
test_case_lists = [test_case_math_ops]
test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# use -k to select certain testcast
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
import mindspore.context as context
@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
context.set_context(mode=context.GRAPH_MODE)
return test_exec_case
raise_set = [
('StridedSlice_1_Error', {
'block': (lambda x: P.StridedSlice(begin_mask="1"), {'exception': TypeError}),
'desc_inputs': [0]}),
('StridedSlice_2_Error', {
'block': (lambda x: P.StridedSlice(end_mask="1"), {'exception': TypeError}),
'desc_inputs': [0]}),
('StridedSlice_3_Error', {
'block': (lambda x: P.StridedSlice(ellipsis_mask=1.1), {'exception': TypeError}),
'desc_inputs': [0]}),
('StridedSlice_4_Error', {
'block': (lambda x: P.StridedSlice(new_axis_mask="1.1"), {'exception': TypeError}),
'desc_inputs': [0]}),
('AssignAdd_Error', {
'block': (P.AssignAdd(), {'exception': TypeError}),
'desc_inputs': [[1]]}),
]
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
def test_check_exception():
return raise_set