mindspore/tests/ut/python/dataset/test_normalizeOp.py

150 lines
4.9 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import mindspore.dataset.transforms.vision.c_transforms as vision
import numpy as np
import matplotlib.pyplot as plt
import mindspore.dataset as ds
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def normalize_np(image):
"""
Apply the normalization
"""
# DE decodes the image in RGB by deafult, hence
# the values here are in RGB
image = np.array(image, np.float32)
image = image - np.array([121.0, 115.0, 100.0])
image = image * (1.0 / np.array([70.0, 68.0, 71.0]))
return image
def get_normalized(image_id):
"""
Reads the image using DE ops and then normalizes using Numpy
"""
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
data1 = data1.map(input_columns=["image"], operations=decode_op)
num_iter = 0
for item in data1.create_dict_iterator():
image = item["image"]
if num_iter == image_id:
return normalize_np(image)
num_iter += 1
def test_normalize_op():
"""
Test Normalize
"""
logger.info("Test Normalize")
# define map operations
decode_op = vision.Decode()
normalize_op = vision.Normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0])
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=normalize_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image_de_normalized = item1["image"]
image_np_normalized = normalize_np(item2["image"])
diff = image_de_normalized - image_np_normalized
mse = np.sum(np.power(diff, 2))
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
assert mse < 0.01
# Uncomment these blocks to see visual results
# plt.subplot(131)
# plt.imshow(image_de_normalized)
# plt.title("DE normalize image")
#
# plt.subplot(132)
# plt.imshow(image_np_normalized)
# plt.title("Numpy normalized image")
#
# plt.subplot(133)
# plt.imshow(diff)
# plt.title("Difference image, mse : {}".format(mse))
#
# plt.show()
num_iter += 1
def test_decode_op():
logger.info("Test Decode")
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1,
shuffle=False)
# define map operations
decode_op = vision.Decode()
# apply map operations on images
data1 = data1.map(input_columns=["image"], operations=decode_op)
num_iter = 0
image = None
for item in data1.create_dict_iterator():
logger.info("Looping inside iterator {}".format(num_iter))
image = item["image"]
# plt.subplot(131)
# plt.imshow(image)
# plt.title("DE image")
# plt.show()
num_iter += 1
def test_decode_normalize_op():
logger.info("Test [Decode, Normalize] in one Map")
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1,
shuffle=False)
# define map operations
decode_op = vision.Decode()
normalize_op = vision.Normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0])
# apply map operations on images
data1 = data1.map(input_columns=["image"], operations=[decode_op, normalize_op])
num_iter = 0
image = None
for item in data1.create_dict_iterator():
logger.info("Looping inside iterator {}".format(num_iter))
image = item["image"]
# plt.subplot(131)
# plt.imshow(image)
# plt.title("DE image")
# plt.show()
num_iter += 1
if __name__ == "__main__":
test_decode_op()
test_decode_normalize_op()
test_normalize_op()