forked from mindspore-Ecosystem/mindspore
114 lines
3.4 KiB
Python
114 lines
3.4 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
import copy
|
|
import mindspore.dataset as ds
|
|
from mindspore.dataset.engine.iterators import ITERATORS_LIST, _cleanup
|
|
|
|
DATA_DIR = ["../data/dataset/testTFTestAllTypes/test.data"]
|
|
SCHEMA_DIR = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
|
COLUMNS = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
|
"col_sint16", "col_sint32", "col_sint64"]
|
|
|
|
|
|
def check(project_columns):
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=COLUMNS, shuffle=False)
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=project_columns, shuffle=False)
|
|
|
|
for data_actual, data_expected in zip(data1.create_tuple_iterator(project_columns), data2.create_tuple_iterator()):
|
|
assert len(data_actual) == len(data_expected)
|
|
assert all([np.array_equal(d1, d2) for d1, d2 in zip(data_actual, data_expected)])
|
|
|
|
|
|
def test_case_iterator():
|
|
"""
|
|
Test creating tuple iterator
|
|
"""
|
|
check(COLUMNS)
|
|
check(COLUMNS[0:1])
|
|
check(COLUMNS[0:2])
|
|
check(COLUMNS[0:7])
|
|
check(COLUMNS[7:8])
|
|
check(COLUMNS[0:2:8])
|
|
|
|
|
|
def test_iterator_weak_ref():
|
|
ITERATORS_LIST.clear()
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR)
|
|
itr1 = data.create_tuple_iterator()
|
|
itr2 = data.create_tuple_iterator()
|
|
itr3 = data.create_tuple_iterator()
|
|
|
|
assert len(ITERATORS_LIST) == 3
|
|
assert sum(itr() is not None for itr in ITERATORS_LIST) == 3
|
|
|
|
del itr1
|
|
assert len(ITERATORS_LIST) == 3
|
|
assert sum(itr() is not None for itr in ITERATORS_LIST) == 2
|
|
|
|
del itr2
|
|
assert len(ITERATORS_LIST) == 3
|
|
assert sum(itr() is not None for itr in ITERATORS_LIST) == 1
|
|
|
|
del itr3
|
|
assert len(ITERATORS_LIST) == 3
|
|
assert sum(itr() is not None for itr in ITERATORS_LIST) == 0
|
|
|
|
itr1 = data.create_tuple_iterator()
|
|
itr2 = data.create_tuple_iterator()
|
|
itr3 = data.create_tuple_iterator()
|
|
|
|
_cleanup()
|
|
with pytest.raises(AttributeError) as info:
|
|
itr2.get_next()
|
|
assert "object has no attribute 'depipeline'" in str(info.value)
|
|
|
|
del itr1
|
|
assert len(ITERATORS_LIST) == 6
|
|
assert sum(itr() is not None for itr in ITERATORS_LIST) == 2
|
|
|
|
_cleanup()
|
|
|
|
|
|
class MyDict(dict):
|
|
def __getattr__(self, key):
|
|
return self[key]
|
|
|
|
def __setattr__(self, key, value):
|
|
self[key] = value
|
|
|
|
def __call__(self, t):
|
|
return t
|
|
|
|
|
|
def test_tree_copy():
|
|
# Testing copying the tree with a pyfunc that cannot be pickled
|
|
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=COLUMNS)
|
|
data1 = data.map(operations=[MyDict()])
|
|
|
|
itr = data1.create_tuple_iterator()
|
|
|
|
assert id(data1) != id(itr.dataset)
|
|
assert id(data) != id(itr.dataset.input[0])
|
|
assert id(data1.operations[0]) == id(itr.dataset.operations[0])
|
|
|
|
itr.release()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_tree_copy()
|