mindspore/tests/ut/python/dataset/test_exceptions.py

66 lines
2.5 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import pytest
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_exception_01():
"""
Test single exception with invalid input
"""
logger.info("test_exception_01")
ds.config.set_num_parallel_workers(1)
data = ds.TFRecordDataset(DATA_DIR, columns_list=["image"])
with pytest.raises(ValueError) as info:
data = data.map(input_columns=["image"], operations=vision.Resize(100, 100))
assert "Invalid interpolation mode." in str(info.value)
def test_exception_02():
"""
Test multiple exceptions with invalid input
"""
logger.info("test_exception_02")
num_samples = 0
with pytest.raises(ValueError) as info:
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
assert "num_samples must be greater than 0" in str(info.value)
num_samples = -1
with pytest.raises(ValueError) as info:
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
assert "num_samples must be greater than 0" in str(info.value)
num_samples = 1
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
data = data.map(input_columns=["image"], operations=vision.Decode())
data = data.map(input_columns=["image"], operations=vision.Resize((100, 100)))
# Confirm 1 sample in dataset
assert sum([1 for _ in data]) == 1
num_iters = 0
for _ in data.create_dict_iterator():
num_iters += 1
assert num_iters == 1
if __name__ == '__main__':
test_exception_01()
test_exception_02()