mindspore/tests/ut/python/dataset/test_decode.py

82 lines
2.9 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing Decode op in DE
"""
import cv2
import mindspore.dataset.transforms.vision.c_transforms as vision
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger
from util import diff_mse
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_decode_op():
"""
Test Decode op
"""
logger.info("test_decode_op")
# Decode with rgb format set to True
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Serialize and Load dataset requires using vision.Decode instead of vision.Decode().
data1 = data1.map(input_columns=["image"], operations=[vision.Decode(True)])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
actual = item1["image"]
expected = cv2.imdecode(item2["image"], cv2.IMREAD_COLOR)
expected = cv2.cvtColor(expected, cv2.COLOR_BGR2RGB)
assert actual.shape == expected.shape
diff = actual - expected
mse = np.sum(np.power(diff, 2))
assert mse == 0
def test_decode_op_tf_file_dataset():
"""
Test Decode op with tf_file dataset
"""
logger.info("test_decode_op_tf_file_dataset")
# Decode with rgb format set to True
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=ds.Shuffle.FILES)
data1 = data1.map(input_columns=["image"], operations=vision.Decode(True))
for item in data1.create_dict_iterator():
logger.info('decode == {}'.format(item['image']))
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
actual = item1["image"]
expected = cv2.imdecode(item2["image"], cv2.IMREAD_COLOR)
expected = cv2.cvtColor(expected, cv2.COLOR_BGR2RGB)
assert actual.shape == expected.shape
diff = actual - expected
mse = np.sum(np.power(diff, 2))
assert mse == 0
if __name__ == "__main__":
test_decode_op()
test_decode_op_tf_file_dataset()