mindspore/tests/ut/python/dataset/test_batch.py

502 lines
15 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from util import save_and_check
import mindspore.dataset as ds
from mindspore import log as logger
# Note: Number of rows in test.data dataset: 12
DATA_DIR = ["../data/dataset/testTFTestAllTypes/test.data"]
GENERATE_GOLDEN = False
def test_batch_01():
"""
Test batch: batch_size>1, drop_remainder=True, no remainder exists
"""
logger.info("test_batch_01")
# define parameters
batch_size = 2
drop_remainder = True
parameters = {"params": {'batch_size': batch_size,
'drop_remainder': drop_remainder}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(batch_size, drop_remainder)
assert sum([1 for _ in data1]) == 6
filename = "batch_01_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_02():
"""
Test batch: batch_size>1, drop_remainder=True, remainder exists
"""
logger.info("test_batch_02")
# define parameters
batch_size = 5
drop_remainder = True
parameters = {"params": {'batch_size': batch_size,
'drop_remainder': drop_remainder}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(batch_size, drop_remainder=drop_remainder)
assert sum([1 for _ in data1]) == 2
filename = "batch_02_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_03():
"""
Test batch: batch_size>1, drop_remainder=False, no remainder exists
"""
logger.info("test_batch_03")
# define parameters
batch_size = 3
drop_remainder = False
parameters = {"params": {'batch_size': batch_size,
'drop_remainder': drop_remainder}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(batch_size=batch_size, drop_remainder=drop_remainder)
assert sum([1 for _ in data1]) == 4
filename = "batch_03_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_04():
"""
Test batch: batch_size>1, drop_remainder=False, remainder exists
"""
logger.info("test_batch_04")
# define parameters
batch_size = 7
drop_remainder = False
parameters = {"params": {'batch_size': batch_size,
'drop_remainder': drop_remainder}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(batch_size, drop_remainder)
assert sum([1 for _ in data1]) == 2
filename = "batch_04_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_05():
"""
Test batch: batch_size=1 (minimum valid size), drop_remainder default
"""
logger.info("test_batch_05")
# define parameters
batch_size = 1
parameters = {"params": {'batch_size': batch_size}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(batch_size)
assert sum([1 for _ in data1]) == 12
filename = "batch_05_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_06():
"""
Test batch: batch_size = number-of-rows-in-dataset, drop_remainder=True, reorder params
"""
logger.info("test_batch_06")
# define parameters
batch_size = 12
drop_remainder = False
parameters = {"params": {'batch_size': batch_size,
'drop_remainder': drop_remainder}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(drop_remainder=drop_remainder, batch_size=batch_size)
assert sum([1 for _ in data1]) == 1
filename = "batch_06_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_07():
"""
Test batch: num_parallel_workers>1, drop_remainder=False, reorder params
"""
logger.info("test_batch_07")
# define parameters
batch_size = 4
drop_remainder = False
num_parallel_workers = 2
parameters = {"params": {'batch_size': batch_size,
'drop_remainder': drop_remainder,
'num_parallel_workers': num_parallel_workers}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(num_parallel_workers=num_parallel_workers, drop_remainder=drop_remainder,
batch_size=batch_size)
assert sum([1 for _ in data1]) == 3
filename = "batch_07_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_08():
"""
Test batch: num_parallel_workers=1, drop_remainder default
"""
logger.info("test_batch_08")
# define parameters
batch_size = 6
num_parallel_workers = 1
parameters = {"params": {'batch_size': batch_size,
'num_parallel_workers': num_parallel_workers}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(batch_size, num_parallel_workers=num_parallel_workers)
assert sum([1 for _ in data1]) == 2
filename = "batch_08_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_09():
"""
Test batch: batch_size > number-of-rows-in-dataset, drop_remainder=False
"""
logger.info("test_batch_09")
# define parameters
batch_size = 13
drop_remainder = False
parameters = {"params": {'batch_size': batch_size,
'drop_remainder': drop_remainder}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(batch_size, drop_remainder=drop_remainder)
assert sum([1 for _ in data1]) == 1
filename = "batch_09_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_10():
"""
Test batch: batch_size > number-of-rows-in-dataset, drop_remainder=True
"""
logger.info("test_batch_10")
# define parameters
batch_size = 99
drop_remainder = True
parameters = {"params": {'batch_size': batch_size,
'drop_remainder': drop_remainder}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(batch_size, drop_remainder=drop_remainder)
assert sum([1 for _ in data1]) == 0
filename = "batch_10_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_11():
"""
Test batch: batch_size=1 and dataset-size=1
"""
logger.info("test_batch_11")
# define parameters
batch_size = 1
parameters = {"params": {'batch_size': batch_size}}
# apply dataset operations
# Use schema file with 1 row
schema_file = "../data/dataset/testTFTestAllTypes/datasetSchema1Row.json"
data1 = ds.TFRecordDataset(DATA_DIR, schema_file)
data1 = data1.batch(batch_size)
assert sum([1 for _ in data1]) == 1
filename = "batch_11_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_12():
"""
Test batch: batch_size boolean value True, treated as valid value 1
"""
logger.info("test_batch_12")
# define parameters
batch_size = True
parameters = {"params": {'batch_size': batch_size}}
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
data1 = data1.batch(batch_size=batch_size)
assert sum([1 for _ in data1]) == 12
filename = "batch_12_result.npz"
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
def test_batch_exception_01():
"""
Test batch exception: num_parallel_workers=0
"""
logger.info("test_batch_exception_01")
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
try:
data1 = data1.batch(batch_size=2, drop_remainder=True, num_parallel_workers=0)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "num_parallel_workers" in str(e)
def test_batch_exception_02():
"""
Test batch exception: num_parallel_workers<0
"""
logger.info("test_batch_exception_02")
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
try:
data1 = data1.batch(3, drop_remainder=True, num_parallel_workers=-1)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "num_parallel_workers" in str(e)
def test_batch_exception_03():
"""
Test batch exception: batch_size=0
"""
logger.info("test_batch_exception_03")
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
try:
data1 = data1.batch(batch_size=0)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "batch_size" in str(e)
def test_batch_exception_04():
"""
Test batch exception: batch_size<0
"""
logger.info("test_batch_exception_04")
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
try:
data1 = data1.batch(batch_size=-1)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "batch_size" in str(e)
def test_batch_exception_05():
"""
Test batch exception: batch_size boolean value False, treated as invalid value 0
"""
logger.info("test_batch_exception_05")
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
try:
data1 = data1.batch(batch_size=False)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "batch_size" in str(e)
def test_batch_exception_07():
"""
Test batch exception: drop_remainder wrong type
"""
logger.info("test_batch_exception_07")
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
try:
data1 = data1.batch(3, drop_remainder=0)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "drop_remainder" in str(e)
def test_batch_exception_08():
"""
Test batch exception: num_parallel_workers wrong type
"""
logger.info("test_batch_exception_08")
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
try:
data1 = data1.batch(3, drop_remainder=True, num_parallel_workers=False)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "num_parallel_workers" in str(e)
def test_batch_exception_09():
"""
Test batch exception: Missing mandatory batch_size
"""
logger.info("test_batch_exception_09")
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
try:
data1 = data1.batch(drop_remainder=True, num_parallel_workers=4)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "batch_size" in str(e)
def test_batch_exception_10():
"""
Test batch exception: num_parallel_workers>>1
"""
logger.info("test_batch_exception_10")
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES)
try:
data1 = data1.batch(batch_size=4, num_parallel_workers=8192)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "num_parallel_workers" in str(e)
def test_batch_exception_11():
"""
Test batch exception: wrong input order, num_parallel_workers wrongly used as drop_remainder
"""
logger.info("test_batch_exception_11")
# define parameters
batch_size = 6
num_parallel_workers = 1
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR)
try:
data1 = data1.batch(batch_size, num_parallel_workers)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "drop_remainder" in str(e)
def test_batch_exception_12():
"""
Test batch exception: wrong input order, drop_remainder wrongly used as batch_size
"""
logger.info("test_batch_exception_12")
# define parameters
batch_size = 1
drop_remainder = True
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR)
try:
data1 = data1.batch(drop_remainder, batch_size=batch_size)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "batch_size" in str(e)
def test_batch_exception_13():
"""
Test batch exception: invalid input parameter
"""
logger.info("test_batch_exception_13")
# define parameters
batch_size = 4
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR)
try:
data1 = data1.batch(batch_size, shard_id=1)
sum([1 for _ in data1])
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "shard_id" in str(e)
if __name__ == '__main__':
test_batch_01()
test_batch_02()
test_batch_03()
test_batch_04()
test_batch_05()
test_batch_06()
test_batch_07()
test_batch_08()
test_batch_09()
test_batch_10()
test_batch_11()
test_batch_12()
test_batch_exception_01()
test_batch_exception_02()
test_batch_exception_03()
test_batch_exception_04()
test_batch_exception_05()
test_batch_exception_07()
test_batch_exception_08()
test_batch_exception_09()
test_batch_exception_10()
test_batch_exception_11()
test_batch_exception_12()
test_batch_exception_13()
logger.info('\n')