mindspore/tests/ut/python/nn/test_ssim.py

137 lines
3.9 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
test ssim
"""
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import _executor
class SSIMNet(nn.Cell):
def __init__(self, max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03):
super(SSIMNet, self).__init__()
self.net = nn.SSIM(max_val, filter_size, filter_sigma, k1, k2)
def construct(self, img1, img2):
return self.net(img1, img2)
def test_compile():
net = SSIMNet()
img1 = Tensor(np.random.random((8, 3, 16, 16)), mstype.float32)
img2 = Tensor(np.random.random((8, 3, 16, 16)), mstype.float32)
_executor.compile(net, img1, img2)
def test_ssim_max_val_negative():
max_val = -1
with pytest.raises(ValueError):
_ = SSIMNet(max_val)
def test_ssim_max_val_bool():
max_val = True
with pytest.raises(TypeError):
_ = SSIMNet(max_val)
def test_ssim_max_val_zero():
max_val = 0
with pytest.raises(ValueError):
_ = SSIMNet(max_val)
def test_ssim_filter_size_float():
with pytest.raises(TypeError):
_ = SSIMNet(filter_size=1.1)
def test_ssim_filter_size_zero():
with pytest.raises(ValueError):
_ = SSIMNet(filter_size=0)
def test_ssim_filter_sigma_zero():
with pytest.raises(ValueError):
_ = SSIMNet(filter_sigma=0.0)
def test_ssim_filter_sigma_negative():
with pytest.raises(ValueError):
_ = SSIMNet(filter_sigma=-0.1)
def test_ssim_k1_k2_wrong_value():
with pytest.raises(ValueError):
_ = SSIMNet(k1=1.1)
with pytest.raises(ValueError):
_ = SSIMNet(k1=1.0)
with pytest.raises(ValueError):
_ = SSIMNet(k1=0.0)
with pytest.raises(ValueError):
_ = SSIMNet(k1=-1.0)
with pytest.raises(ValueError):
_ = SSIMNet(k2=1.1)
with pytest.raises(ValueError):
_ = SSIMNet(k2=1.0)
with pytest.raises(ValueError):
_ = SSIMNet(k2=0.0)
with pytest.raises(ValueError):
_ = SSIMNet(k2=-1.0)
def test_ssim_different_shape():
shape_1 = (8, 3, 16, 16)
shape_2 = (8, 3, 8, 8)
img1 = Tensor(np.random.random(shape_1))
img2 = Tensor(np.random.random(shape_2))
net = SSIMNet()
with pytest.raises(ValueError):
_executor.compile(net, img1, img2)
def test_ssim_different_dtype():
dtype_1 = mstype.float32
dtype_2 = mstype.float16
img1 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_1)
img2 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_2)
net = SSIMNet()
with pytest.raises(TypeError):
_executor.compile(net, img1, img2)
def test_ssim_invalid_5d_input():
shape_1 = (8, 3, 16, 16)
shape_2 = (8, 3, 8, 8)
invalid_shape = (8, 3, 16, 16, 1)
img1 = Tensor(np.random.random(shape_1))
invalid_img1 = Tensor(np.random.random(invalid_shape))
img2 = Tensor(np.random.random(shape_2))
invalid_img2 = Tensor(np.random.random(invalid_shape))
net = SSIMNet()
with pytest.raises(ValueError):
_executor.compile(net, invalid_img1, img2)
with pytest.raises(ValueError):
_executor.compile(net, img1, invalid_img2)
with pytest.raises(ValueError):
_executor.compile(net, invalid_img1, invalid_img2)