forked from mindspore-Ecosystem/mindspore
137 lines
4.9 KiB
Python
137 lines
4.9 KiB
Python
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test parameter """
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mindspore import Tensor, Parameter, ParameterTuple
|
|
from mindspore._checkparam import _check_str_by_regular
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.common.initializer import initializer
|
|
|
|
|
|
def test_parameter_init():
|
|
dat = np.array([[1, 2, 3], [2, 3, 4]])
|
|
tensor = Tensor(dat)
|
|
Parameter(tensor, name="testParameter", requires_grad=True, layerwise_parallel=False)
|
|
|
|
|
|
def test_parameter_tuple_illegal():
|
|
p1 = Parameter(initializer(0, [1], mstype.int32), name="global_step1")
|
|
p2 = Parameter(initializer(0, [1], mstype.int32), name="global_step2")
|
|
plist = [p1, p2]
|
|
plist2 = [p1, "str"]
|
|
ptuple = (p1, p2)
|
|
ptuple_str = ("2", "1")
|
|
pstr = "[2,3]"
|
|
pnum = 3
|
|
|
|
ParameterTuple(plist)
|
|
ParameterTuple(ptuple)
|
|
with pytest.raises(TypeError):
|
|
ParameterTuple(p1)
|
|
with pytest.raises(ValueError):
|
|
ParameterTuple(plist2)
|
|
with pytest.raises(ValueError):
|
|
ParameterTuple(ptuple_str)
|
|
with pytest.raises(ValueError):
|
|
ParameterTuple(pstr)
|
|
with pytest.raises(TypeError):
|
|
ParameterTuple(pnum)
|
|
|
|
|
|
def test_parameter_init_illegal():
|
|
dat = np.array([[1, 2, 3], [2, 3, 4]])
|
|
tensor = Tensor(dat)
|
|
data_none = None
|
|
data_bool = True
|
|
data_str = "nicai"
|
|
data_int = 3
|
|
data_list = [1, "2", True]
|
|
data_tuple = (1, 2, 3)
|
|
|
|
# test data
|
|
Parameter(tensor, name=data_str)
|
|
Parameter(data_int, name=data_str)
|
|
Parameter(dat, name=data_str)
|
|
with pytest.raises(ValueError):
|
|
Parameter(data_bool, name=data_str)
|
|
|
|
# test name
|
|
Parameter(tensor, name=data_none)
|
|
with pytest.raises(ValueError):
|
|
Parameter(tensor, name=dat)
|
|
with pytest.raises(ValueError):
|
|
Parameter(tensor, name=tensor)
|
|
with pytest.raises(ValueError):
|
|
Parameter(tensor, name=data_bool)
|
|
with pytest.raises(ValueError):
|
|
Parameter(tensor, name=data_int)
|
|
with pytest.raises(ValueError):
|
|
Parameter(tensor, name=data_list)
|
|
with pytest.raises(ValueError):
|
|
Parameter(tensor, name=data_tuple)
|
|
|
|
Parameter(tensor, name=data_str, requires_grad=data_bool)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_none)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=dat)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=tensor)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_str)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_int)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_list)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_tuple)
|
|
|
|
Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_bool)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=dat)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=tensor)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_none)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_str)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_int)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_list)
|
|
with pytest.raises(TypeError):
|
|
Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_tuple)
|
|
|
|
|
|
def test_check_str_by_regular():
|
|
str1 = "12_sf.asdf_"
|
|
str2 = "x12_sf.asdf."
|
|
str3 = "_x12_sf.asdf"
|
|
str4 = ".12_sf.asdf"
|
|
str5 = "12_sf.a$sdf."
|
|
str6 = "12+sf.asdf"
|
|
_check_str_by_regular(str1)
|
|
_check_str_by_regular(str2)
|
|
_check_str_by_regular(str3)
|
|
with pytest.raises(ValueError):
|
|
_check_str_by_regular(str4)
|
|
with pytest.raises(ValueError):
|
|
_check_str_by_regular(str5)
|
|
with pytest.raises(ValueError):
|
|
_check_str_by_regular(str6)
|