mindspore/tests/ut/python/nn/test_activation.py

108 lines
2.8 KiB
Python
Executable File

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test Activations """
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import _executor
from ..ut_filter import non_graph_engine
class SoftmaxNet(nn.Cell):
def __init__(self, dim):
super(SoftmaxNet, self).__init__()
self.softmax = nn.Softmax(dim)
def construct(self, x):
return self.softmax(x)
@non_graph_engine
def test_compile():
net = SoftmaxNet(0)
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
net(input_tensor)
@non_graph_engine
def test_compile_axis():
net = SoftmaxNet(-1)
prob = 355
input_data = np.random.randn(4, 16, 1, 1).astype(np.float32) * prob
input_tensor = Tensor(input_data)
net(input_tensor)
class LogSoftmaxNet(nn.Cell):
def __init__(self, dim):
super(LogSoftmaxNet, self).__init__()
self.logsoftmax = nn.LogSoftmax(dim)
def construct(self, x):
return self.logsoftmax(x)
@non_graph_engine
def test_compile_logsoftmax():
net = LogSoftmaxNet(0)
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]))
net(input_tensor)
class Net1(nn.Cell):
def __init__(self):
super(Net1, self).__init__()
self.relu = nn.ReLU()
def construct(self, x):
return self.relu(x)
def test_compile_relu():
net = Net1()
input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
_executor.compile(net, input_data)
class Net_gelu(nn.Cell):
def __init__(self):
super(Net_gelu, self).__init__()
self.gelu = nn.GELU()
def construct(self, x):
return self.gelu(x)
def test_compile_gelu():
net = Net_gelu()
input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
_executor.compile(net, input_data)
class NetLeakyReLU(nn.Cell):
def __init__(self, alpha):
super(NetLeakyReLU, self).__init__()
self.leaky_relu = nn.LeakyReLU(alpha)
def construct(self, x):
return self.leaky_relu(x)
def test_compile_leaky_relu():
net = NetLeakyReLU(alpha=0.1)
input_data = Tensor(np.array([[1.6, 0, 0.6], [6, 0, -6]], dtype=np.float32))
_executor.compile(net, input_data)