forked from mindspore-Ecosystem/mindspore
273 lines
9.2 KiB
Python
273 lines
9.2 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
"""
|
|
Bert evaluation script.
|
|
"""
|
|
|
|
import os
|
|
import argparse
|
|
import math
|
|
import numpy as np
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore import context
|
|
from mindspore import log as logger
|
|
from mindspore.common.tensor import Tensor
|
|
import mindspore.dataset as de
|
|
import mindspore.dataset.transforms.c_transforms as C
|
|
from mindspore.train.model import Model
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from src.evaluation_config import cfg, bert_net_cfg
|
|
from src.utils import BertNER, BertCLS, BertReg
|
|
from src.CRF import postprocess
|
|
from src.cluener_evaluation import submit
|
|
from src.finetune_config import tag_to_index
|
|
|
|
|
|
class Accuracy():
|
|
"""
|
|
calculate accuracy
|
|
"""
|
|
def __init__(self):
|
|
self.acc_num = 0
|
|
self.total_num = 0
|
|
|
|
def update(self, logits, labels):
|
|
"""
|
|
Update accuracy
|
|
"""
|
|
labels = labels.asnumpy()
|
|
labels = np.reshape(labels, -1)
|
|
logits = logits.asnumpy()
|
|
logit_id = np.argmax(logits, axis=-1)
|
|
self.acc_num += np.sum(labels == logit_id)
|
|
self.total_num += len(labels)
|
|
print("=========================accuracy is ", self.acc_num / self.total_num)
|
|
|
|
|
|
class F1():
|
|
"""
|
|
calculate F1 score
|
|
"""
|
|
def __init__(self):
|
|
self.TP = 0
|
|
self.FP = 0
|
|
self.FN = 0
|
|
|
|
def update(self, logits, labels):
|
|
"""
|
|
update F1 score
|
|
"""
|
|
labels = labels.asnumpy()
|
|
labels = np.reshape(labels, -1)
|
|
if cfg.use_crf:
|
|
backpointers, best_tag_id = logits
|
|
best_path = postprocess(backpointers, best_tag_id)
|
|
logit_id = []
|
|
for ele in best_path:
|
|
logit_id.extend(ele)
|
|
else:
|
|
logits = logits.asnumpy()
|
|
logit_id = np.argmax(logits, axis=-1)
|
|
logit_id = np.reshape(logit_id, -1)
|
|
pos_eva = np.isin(logit_id, [i for i in range(1, cfg.num_labels)])
|
|
pos_label = np.isin(labels, [i for i in range(1, cfg.num_labels)])
|
|
self.TP += np.sum(pos_eva&pos_label)
|
|
self.FP += np.sum(pos_eva&(~pos_label))
|
|
self.FN += np.sum((~pos_eva)&pos_label)
|
|
|
|
|
|
class MCC():
|
|
"""
|
|
Calculate Matthews Correlation Coefficient.
|
|
"""
|
|
def __init__(self):
|
|
self.TP = 0
|
|
self.FP = 0
|
|
self.FN = 0
|
|
self.TN = 0
|
|
|
|
def update(self, logits, labels):
|
|
"""
|
|
Update MCC score
|
|
"""
|
|
labels = labels.asnumpy()
|
|
labels = np.reshape(labels, -1)
|
|
labels = labels.astype(np.bool)
|
|
logits = logits.asnumpy()
|
|
logit_id = np.argmax(logits, axis=-1)
|
|
logit_id = np.reshape(logit_id, -1)
|
|
logit_id = logit_id.astype(np.bool)
|
|
ornot = logit_id ^ labels
|
|
|
|
self.TP += (~ornot & labels).sum()
|
|
self.FP += (ornot & ~labels).sum()
|
|
self.FN += (ornot & labels).sum()
|
|
self.TN += (~ornot & ~labels).sum()
|
|
|
|
|
|
class Spearman_Correlation():
|
|
"""
|
|
calculate Spearman Correlation coefficient
|
|
"""
|
|
def __init__(self):
|
|
self.label = []
|
|
self.logit = []
|
|
|
|
def update(self, logits, labels):
|
|
"""
|
|
Update Spearman Correlation
|
|
"""
|
|
labels = labels.asnumpy()
|
|
labels = np.reshape(labels, -1)
|
|
logits = logits.asnumpy()
|
|
logits = np.reshape(logits, -1)
|
|
self.label.append(labels)
|
|
self.logit.append(logits)
|
|
|
|
def cal(self):
|
|
"""
|
|
Calculate Spearman Correlation
|
|
"""
|
|
label = np.concatenate(self.label)
|
|
logit = np.concatenate(self.logit)
|
|
sort_label = label.argsort()[::-1]
|
|
sort_logit = logit.argsort()[::-1]
|
|
n = len(label)
|
|
d_acc = 0
|
|
for i in range(n):
|
|
d = np.where(sort_label == i)[0] - np.where(sort_logit == i)[0]
|
|
d_acc += d**2
|
|
ps = 1 - 6*d_acc/n/(n**2-1)
|
|
return ps
|
|
|
|
|
|
def get_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
|
"""
|
|
get dataset
|
|
"""
|
|
_ = distribute_file
|
|
|
|
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask",
|
|
"segment_ids", "label_ids"])
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
|
if cfg.task == "Regression":
|
|
type_cast_op_float = C.TypeCast(mstype.float32)
|
|
ds = ds.map(input_columns="label_ids", operations=type_cast_op_float)
|
|
else:
|
|
ds = ds.map(input_columns="label_ids", operations=type_cast_op)
|
|
ds = ds.repeat(repeat_count)
|
|
|
|
# apply shuffle operation
|
|
buffer_size = 960
|
|
ds = ds.shuffle(buffer_size=buffer_size)
|
|
|
|
# apply batch operations
|
|
ds = ds.batch(batch_size, drop_remainder=True)
|
|
return ds
|
|
|
|
|
|
def bert_predict(Evaluation):
|
|
"""
|
|
prediction function
|
|
"""
|
|
target = args_opt.device_target
|
|
if target == "Ascend":
|
|
devid = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)
|
|
elif target == "GPU":
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
if bert_net_cfg.compute_type != mstype.float32:
|
|
logger.warning('GPU only support fp32 temporarily, run with fp32.')
|
|
bert_net_cfg.compute_type = mstype.float32
|
|
else:
|
|
raise Exception("Target error, GPU or Ascend is supported.")
|
|
dataset = get_dataset(bert_net_cfg.batch_size, 1)
|
|
if cfg.use_crf:
|
|
net_for_pretraining = Evaluation(bert_net_cfg, False, num_labels=len(tag_to_index), use_crf=True,
|
|
tag_to_index=tag_to_index, dropout_prob=0.0)
|
|
else:
|
|
net_for_pretraining = Evaluation(bert_net_cfg, False, num_labels)
|
|
net_for_pretraining.set_train(False)
|
|
param_dict = load_checkpoint(cfg.finetune_ckpt)
|
|
load_param_into_net(net_for_pretraining, param_dict)
|
|
model = Model(net_for_pretraining)
|
|
return model, dataset
|
|
|
|
def test_eval():
|
|
"""
|
|
evaluation function
|
|
"""
|
|
if cfg.task == "SeqLabeling":
|
|
task_type = BertNER
|
|
elif cfg.task == "Regression":
|
|
task_type = BertReg
|
|
elif cfg.task == "Classification":
|
|
task_type = BertCLS
|
|
elif cfg.task == "COLA":
|
|
task_type = BertCLS
|
|
else:
|
|
raise ValueError("Task not supported.")
|
|
model, dataset = bert_predict(task_type)
|
|
|
|
if cfg.clue_benchmark:
|
|
submit(model, cfg.data_file, bert_net_cfg.seq_length)
|
|
else:
|
|
if cfg.task == "SeqLabeling":
|
|
callback = F1()
|
|
elif cfg.task == "COLA":
|
|
callback = MCC()
|
|
elif cfg.task == "Regression":
|
|
callback = Spearman_Correlation()
|
|
else:
|
|
callback = Accuracy()
|
|
|
|
columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
|
|
for data in dataset.create_dict_iterator():
|
|
input_data = []
|
|
for i in columns_list:
|
|
input_data.append(Tensor(data[i]))
|
|
input_ids, input_mask, token_type_id, label_ids = input_data
|
|
logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
|
|
callback.update(logits, label_ids)
|
|
print("==============================================================")
|
|
if cfg.task == "SeqLabeling":
|
|
print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
|
|
print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
|
|
print("F1 {:.6f} ".format(2*callback.TP / (2*callback.TP + callback.FP + callback.FN)))
|
|
elif cfg.task == "COLA":
|
|
TP = callback.TP
|
|
TN = callback.TN
|
|
FP = callback.FP
|
|
FN = callback.FN
|
|
mcc = (TP*TN-FP*FN)/math.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))
|
|
print("MCC: {:.6f}".format(mcc))
|
|
elif cfg.task == "Regression":
|
|
print("Spearman Correlation is {:.6f}".format(callback.cal()[0]))
|
|
else:
|
|
print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
|
|
callback.acc_num / callback.total_num))
|
|
print("==============================================================")
|
|
|
|
parser = argparse.ArgumentParser(description='Bert eval')
|
|
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
|
|
args_opt = parser.parse_args()
|
|
if __name__ == "__main__":
|
|
num_labels = cfg.num_labels
|
|
test_eval()
|