9.4 KiB
BERT Example
Description
This example implements pre-training, fine-tuning and evaluation of BERT-base(the base version of BERT model) and BERT-NEZHA(a Chinese pretrained language model developed by Huawei, which introduced a improvement of Functional Relative Positional Encoding as an effective positional encoding scheme).
Requirements
- Install MindSpore.
- Download the zhwiki dataset for pre-training. Extract and clean text in the dataset with WikiExtractor. Convert the dataset to TFRecord format and move the files to a specified path.
- Download the CLUE/SQuAD v1.1 dataset for fine-tuning and evaluation.
Notes: If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
Running the Example
Pre-Training
-
Set options in
config.py
, including lossscale, optimizer and network. Click here for more information about dataset and the json schema file. -
Run
run_standalone_pretrain.sh
for non-distributed pre-training of BERT-base and BERT-NEZHA model.sh scripts/run_standalone_pretrain.sh DEVICE_ID EPOCH_SIZE DATA_DIR SCHEMA_DIR
-
Run
run_distribute_pretrain.sh
for distributed pre-training of BERT-base and BERT-NEZHA model.sh scripts/run_distribute_pretrain.sh DEVICE_NUM EPOCH_SIZE DATA_DIR SCHEMA_DIR MINDSPORE_HCCL_CONFIG_PATH
Fine-Tuning
-
Set options in
finetune_config.py
. Make sure the 'data_file', 'schema_file' and 'pre_training_file' are set to your own path. Set the 'pre_training_ckpt' to a saved checkpoint file generated after pre-training. -
Run
finetune.py
for fine-tuning of BERT-base and BERT-NEZHA model.python finetune.py
Evaluation
-
Set options in
evaluation_config.py
. Make sure the 'data_file', 'schema_file' and 'finetune_ckpt' are set to your own path. -
NER: Run
evaluation.py
for evaluation of BERT-base and BERT-NEZHA model.python evaluation.py
-
SQuAD v1.1: Run
squadeval.py
andSQuAD_postprocess.py
for evaluation of BERT-base and BERT-NEZHA model.python squadeval.py
python SQuAD_postprocess.py
Usage
Pre-Training
usage: run_pretrain.py [--distribute DISTRIBUTE] [--epoch_size N] [----device_num N] [--device_id N]
[--enable_save_ckpt ENABLE_SAVE_CKPT]
[--enable_lossscale ENABLE_LOSSSCALE] [--do_shuffle DO_SHUFFLE]
[--enable_data_sink ENABLE_DATA_SINK] [--data_sink_steps N] [--checkpoint_path CHECKPOINT_PATH]
[--save_checkpoint_steps N] [--save_checkpoint_num N]
[--data_dir DATA_DIR] [--schema_dir SCHEMA_DIR]
options:
--distribute pre_training by serveral devices: "true"(training by more than 1 device) | "false", default is "false"
--epoch_size epoch size: N, default is 1
--device_num number of used devices: N, default is 1
--device_id device id: N, default is 0
--enable_save_ckpt enable save checkpoint: "true" | "false", default is "true"
--enable_lossscale enable lossscale: "true" | "false", default is "true"
--do_shuffle enable shuffle: "true" | "false", default is "true"
--enable_data_sink enable data sink: "true" | "false", default is "true"
--data_sink_steps set data sink steps: N, default is 1
--checkpoint_path path to save checkpoint files: PATH, default is ""
--save_checkpoint_steps steps for saving checkpoint files: N, default is 1000
--save_checkpoint_num number for saving checkpoint files: N, default is 1
--data_dir path to dataset directory: PATH, default is ""
--schema_dir path to schema.json file, PATH, default is ""
Options and Parameters
It contains of parameters of BERT model and options for training, which is set in file config.py
, finetune_config.py
and evaluation_config.py
respectively.
Options:
config.py:
bert_network version of BERT model: base | nezha, default is base
loss_scale_value initial value of loss scale: N, default is 2^32
scale_factor factor used to update loss scale: N, default is 2
scale_window steps for once updatation of loss scale: N, default is 1000
optimizer optimizer used in the network: AdamWerigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
finetune_config.py:
task task type: SeqLabeling | Regression | Classification | COLA | SQUAD
num_labels number of labels to do classification
data_file dataset file to load: PATH, default is "/your/path/train.tfrecord"
schema_file dataset schema file to load: PATH, default is "/your/path/schema.json"
epoch_num repeat counts of training: N, default is 5
ckpt_prefix prefix used to save checkpoint files: PREFIX, default is "bert"
ckpt_dir path to save checkpoint files: PATH, default is None
pre_training_ckpt checkpoint file to load: PATH, default is "/your/path/pre_training.ckpt"
use_crf whether to use crf for evaluation. use_crf takes effect only when task type is NER, default is False
optimizer optimizer used in fine-tune network: AdamWeigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
evaluation_config.py:
task task type: SeqLabeling | Regression | Classification | COLA
num_labels number of labels to do classsification
data_file dataset file to load: PATH, default is "/your/path/evaluation.tfrecord"
schema_file dataset schema file to load: PATH, default is "/your/path/schema.json"
finetune_ckpt checkpoint file to load: PATH, default is "/your/path/your.ckpt"
use_crf whether to use crf for evaluation. use_crf takes effect only when task type is NER, default is False
clue_benchmark whether to use clue benchmark. clue_benchmark takes effect only when task type is NER, default is False
Parameters:
Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation):
batch_size batch size of input dataset: N, default is 16
seq_length length of input sequence: N, default is 128
vocab_size size of each embedding vector: N, default is 21136
hidden_size size of bert encoder layers: N, default is 768
num_hidden_layers number of hidden layers: N, default is 12
num_attention_heads number of attention heads: N, default is 12
intermediate_size size of intermediate layer: N, default is 3072
hidden_act activation function used: ACTIVATION, default is "gelu"
hidden_dropout_prob dropout probability for BertOutput: Q, default is 0.1
attention_probs_dropout_prob dropout probability for BertAttention: Q, default is 0.1
max_position_embeddings maximum length of sequences: N, default is 512
type_vocab_size size of token type vocab: N, default is 16
initializer_range initialization value of TruncatedNormal: Q, default is 0.02
use_relative_positions use relative positions or not: True | False, default is False
input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True
token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True
dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32
compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16
Parameters for optimizer:
AdamWeightDecayDynamicLR:
decay_steps steps of the learning rate decay: N
learning_rate value of learning rate: Q
end_learning_rate value of end learning rate: Q, must be positive
power power: Q
warmup_steps steps of the learning rate warm up: N
weight_decay weight decay: Q
eps term added to the denominator to improve numerical stability: Q
Lamb:
decay_steps steps of the learning rate decay: N
learning_rate value of learning rate: Q
end_learning_rate value of end learning rate: Q
power power: Q
warmup_steps steps of the learning rate warm up: N
weight_decay weight decay: Q
Momentum:
learning_rate value of learning rate: Q
momentum momentum for the moving average: Q