mindspore/tests/ut/python/utils/test_initializer_fuzz.py

100 lines
2.8 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_initializer_fuzz """
import pytest
import mindspore.nn as nn
from mindspore import Model
class Net(nn.Cell):
""" Net definition """
def __init__(self, in_str):
a, b, c, d, e, f, g, h = in_str.strip().split()
a = int(a)
b = int(b)
c = int(b)
d = int(b)
e = int(b)
f = int(b)
g = int(b)
h = int(b)
super(Net, self).__init__()
self.conv = nn.Conv2d(a, b, c, pad_mode="valid")
self.bn = nn.BatchNorm2d(d)
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
self.fc = nn.Dense(e * f * g, h)
def construct(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.flatten(x)
out = self.fc(x)
return out
class LeNet5(nn.Cell):
""" LeNet5 definition """
def __init__(self, in_str):
super(LeNet5, self).__init__()
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15 = in_str.strip().split()
a1 = int(a1)
a2 = int(a2)
a3 = int(a3)
a4 = int(a4)
a5 = int(a5)
a6 = int(a6)
a7 = int(a7)
a8 = int(a8)
a9 = int(a9)
a10 = int(a10)
a11 = int(a11)
a12 = int(a12)
a13 = int(a13)
a14 = int(a14)
a15 = int(a15)
self.conv1 = nn.Conv2d(a1, a2, a3, pad_mode="valid")
self.conv2 = nn.Conv2d(a4, a5, a6, pad_mode="valid")
self.fc1 = nn.Dense(a7 * a8 * a9, a10)
self.fc2 = nn.Dense(a11, a12)
self.fc3 = nn.Dense(a13, a14)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=a15)
self.flatten = nn.Flatten()
def construct(self, x):
x = self.max_pool2d(self.relu(self.conv1(x)))
x = self.max_pool2d(self.relu(self.conv2(x)))
x = self.flatten(x)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
def test_shape_error():
""" for fuzz test"""
in_str = "3 6 5 6 -6 5 16 5 5 120 120 84 84 3 2"
with pytest.raises(ValueError):
net = LeNet5(in_str) # neural network
Model(net)