forked from mindspore-Ecosystem/mindspore
164 lines
5.6 KiB
Python
164 lines
5.6 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" auto mixed precision """
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
from mindspore import Tensor
|
|
from mindspore import amp
|
|
from mindspore import nn
|
|
from mindspore.communication.management import init
|
|
from mindspore.context import ParallelMode
|
|
from mindspore.train import Model
|
|
from ....dataset_mock import MindData
|
|
|
|
|
|
def setup_module(module):
|
|
_ = module
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, in_features, out_features):
|
|
super(Net, self).__init__()
|
|
self.dense = nn.Dense(in_features, out_features)
|
|
self.loss = nn.MSELoss()
|
|
|
|
def construct(self, input_x, label):
|
|
output = self.dense(input_x)
|
|
loss = self.loss(output, label)
|
|
return loss
|
|
|
|
|
|
class NetNoLoss(nn.Cell):
|
|
def __init__(self, in_features, out_features):
|
|
super(NetNoLoss, self).__init__()
|
|
self.dense = nn.Dense(in_features, out_features)
|
|
|
|
def construct(self, input_x):
|
|
return self.dense(input_x)
|
|
|
|
|
|
def test_amp_o0():
|
|
inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
|
label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
|
net = Net(16, 16)
|
|
|
|
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
train_network = amp.build_train_network(net, optimizer, level="O0")
|
|
_ = train_network(inputs, label)
|
|
|
|
|
|
def test_amp_o2():
|
|
inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
|
label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
|
net = Net(16, 16)
|
|
|
|
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
train_network = amp.build_train_network(net, optimizer, level="O2")
|
|
_ = train_network(inputs, label)
|
|
|
|
|
|
def test_amp_o2_loss():
|
|
inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
|
label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
|
net = NetNoLoss(16, 16)
|
|
loss = nn.MSELoss()
|
|
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
train_network = amp.build_train_network(net, optimizer, loss, level="O2")
|
|
_ = train_network(inputs, label)
|
|
|
|
|
|
def test_amp_o0_loss():
|
|
inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
|
label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
|
net = NetNoLoss(16, 16)
|
|
loss = nn.MSELoss()
|
|
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
train_network = amp.build_train_network(net, optimizer, loss)
|
|
_ = train_network(inputs, label)
|
|
|
|
|
|
class MindDataSet(MindData):
|
|
def __init__(self, dataset_types, dataset_shapes):
|
|
super(MindDataSet, self).__init__(size=2, batch_size=32,
|
|
np_types=dataset_types,
|
|
output_shapes=dataset_shapes,
|
|
input_indexs=(0, 1))
|
|
|
|
def __next__(self):
|
|
if self._size < self._iter_num:
|
|
raise StopIteration
|
|
self._iter_num += 1
|
|
lst = []
|
|
for shape_, type_ in zip(self._output_shapes, self._np_types):
|
|
lst.append(Tensor(np.ones(shape_).astype(type_)))
|
|
return tuple(lst)
|
|
|
|
|
|
def test_compile_model_train_O0():
|
|
dataset_types = (np.float32, np.float32)
|
|
dataset_shapes = ((16, 16), (16, 16))
|
|
|
|
dataset = MindDataSet(dataset_types, dataset_shapes)
|
|
|
|
net = NetNoLoss(16, 16)
|
|
loss = nn.MSELoss()
|
|
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"acc"}, amp_level="O0")
|
|
model.train(2, dataset, dataset_sink_mode=False)
|
|
with pytest.raises(ValueError):
|
|
# not actual run, the metrics step will fail, check if compile ok.
|
|
model.eval(dataset)
|
|
|
|
|
|
def test_compile_model_train_O2():
|
|
dataset_types = (np.float32, np.float32)
|
|
dataset_shapes = ((16, 16), (16, 16))
|
|
|
|
dataset = MindDataSet(dataset_types, dataset_shapes)
|
|
|
|
net = NetNoLoss(16, 16)
|
|
loss = nn.MSELoss()
|
|
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"acc"}, amp_level="O2")
|
|
model.train(2, dataset, dataset_sink_mode=False)
|
|
with pytest.raises(ValueError):
|
|
# not actual run, the metrics step will fail, check if compile ok.
|
|
model.eval(dataset)
|
|
|
|
|
|
def test_compile_model_train_O2_parallel():
|
|
dataset_types = (np.float32, np.float32)
|
|
dataset_shapes = ((16, 16), (16, 16))
|
|
context.set_auto_parallel_context(
|
|
global_rank=0, device_num=8,
|
|
mirror_mean=True, parameter_broadcast=True,
|
|
parallel_mode=ParallelMode.DATA_PARALLEL)
|
|
|
|
dataset = MindDataSet(dataset_types, dataset_shapes)
|
|
|
|
net = NetNoLoss(16, 16)
|
|
loss = nn.MSELoss()
|
|
optimizer = nn.Momentum(net.trainable_params(), 0.1, 0.9, 0.00004, 1024.0)
|
|
|
|
init()
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"acc"}, amp_level="O2")
|
|
model.train(2, dataset, dataset_sink_mode=False)
|