mindspore/tests/ut/python/pynative_mode/test_pynative_model.py

149 lines
4.8 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_pynative_model """
import numpy as np
import mindspore.nn as nn
from mindspore import Parameter, ParameterTuple, Tensor
from mindspore import context
from mindspore.nn.optim import Momentum
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine
grad_by_list = C.GradOperation(get_by_list=True)
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
class GradWrap(nn.Cell):
""" GradWrap definition """
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
self.weights = ParameterTuple(network.get_parameters())
def construct(self, x, label):
weights = self.weights
return grad_by_list(self.network, weights)(x, label)
@non_graph_engine
def test_softmaxloss_grad():
""" test_softmaxloss_grad """
class NetWithLossClass(nn.Cell):
""" NetWithLossClass definition """
def __init__(self, network):
super(NetWithLossClass, self).__init__()
self.loss = nn.SoftmaxCrossEntropyWithLogits()
self.network = network
def construct(self, x, label):
predict = self.network(x)
return self.loss(predict, label)
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name="bias")
self.fc = P.MatMul()
self.biasAdd = P.BiasAdd()
def construct(self, x):
x = self.biasAdd(self.fc(x, self.weight), self.bias)
return x
net = GradWrap(NetWithLossClass(Net()))
predict = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
print("pynative run")
out = net.construct(predict, label)
print("out:", out)
print(out[0], (out[0]).asnumpy(), ":result")
@non_graph_engine
def test_lenet_grad():
""" test_lenet_grad """
class NetWithLossClass(nn.Cell):
""" NetWithLossClass definition """
def __init__(self, network):
super(NetWithLossClass, self).__init__()
self.loss = nn.SoftmaxCrossEntropyWithLogits()
self.network = network
def construct(self, x, label):
predict = self.network(x)
return self.loss(predict, label)
class LeNet5(nn.Cell):
""" LeNet5 definition """
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = P.Flatten()
def construct(self, x):
x = self.max_pool2d(self.relu(self.conv1(x)))
x = self.max_pool2d(self.relu(self.conv2(x)))
x = self.flatten(x)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
input_data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([1, 10]).astype(np.float32))
iteration_num = 1
verification_step = 0
net = LeNet5()
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False)
momen_opti = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = GradWrap(NetWithLossClass(net))
train_net.set_train()
for i in range(0, iteration_num):
# get the gradients
grads = train_net(input_data, label)
# update parameters
success = momen_opti(grads)
if success is False:
print("fail to run optimizer")
# verification
if i == verification_step:
fw_output = net(input_data)
loss_output = loss(fw_output, label)
print("The loss of %s-th iteration is %s" % (i, loss_output.asnumpy()))