mindspore/tests/ut/python/parallel/test_auto_parallel_onehot.py

134 lines
4.2 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.common.parameter import Parameter
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.train import Model
from mindspore.context import ParallelMode
from tests.dataset_mock import MindData
from tests.ut.python.ops.test_math_ops import VirtualLoss
context.set_context(mode=context.GRAPH_MODE)
grad_all = C.GradOperation(get_all=True)
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return grad_all(self.network)(x, y, b)
def test_auto_parallel_arithmetic():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.matmul = P.MatMul()
self.one_hot = P.OneHot()
self.on_value = Tensor(1.0, ms.float32)
self.off_value = Tensor(0.0, ms.float32)
self.matmul2 = P.MatMul()
def construct(self, x, y, b):
out = self.matmul(x, y)
out1 = self.one_hot(b, 64, self.on_value, self.off_value)
out2 = self.matmul2(out, out1)
return out2
context.set_auto_parallel_context(device_num=8, global_rank=0)
net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="auto_parallel")
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.int32)
_executor.compile(net, x, y, b)
def test_auto_parallel_arithmetic_model():
class NetOneHot(nn.Cell):
def __init__(self):
super().__init__()
self.matmul = P.MatMul()
self.one_hot = P.OneHot().set_strategy(((1, 8), (), ()))
self.on_value = Tensor(1.0, ms.float32)
self.off_value = Tensor(0.0, ms.float32)
self.matmul2 = P.MatMul()
self.w = Parameter(Tensor(np.zeros([32, 64]).astype(np.float32)), "weight", requires_grad=True)
def construct(self, x, b):
out = self.matmul(x, self.w)
out1 = self.one_hot(b, 64, self.on_value, self.off_value)
out2 = self.matmul2(out, out1)
return out2
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode=ParallelMode.AUTO_PARALLEL)
net = NetOneHot()
x = Tensor(np.ones([8, 32]), dtype=ms.float32)
b = Tensor(np.ones([8]), dtype=ms.int32)
dataset = Dataset(x, b, 2)
opt = Momentum(net.trainable_params(), 0.1, 0.9)
model = Model(net, optimizer=opt)
model.train(2, dataset, dataset_sink_mode=False)