forked from mindspore-Ecosystem/mindspore
310 lines
14 KiB
Python
310 lines
14 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
from mindspore.parallel import _cost_model_context as cost_model_context
|
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
|
from mindspore.train import Model
|
|
from mindspore.context import ParallelMode
|
|
from tests.dataset_mock import MindData
|
|
|
|
|
|
class Dataset(MindData):
|
|
def __init__(self, predict, label, length=3):
|
|
super(Dataset, self).__init__(size=length)
|
|
self.predict = predict
|
|
self.label = label
|
|
self.index = 0
|
|
self.length = length
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.index >= self.length:
|
|
raise StopIteration
|
|
self.index += 1
|
|
return self.predict, self.label
|
|
|
|
def reset(self):
|
|
self.index = 0
|
|
|
|
|
|
class DenseNet1(nn.Cell):
|
|
def __init__(self, has_bias=True, activation='relu'):
|
|
super(DenseNet1, self).__init__()
|
|
self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
|
|
def construct(self, x):
|
|
q = self.fc1(x)
|
|
k = self.fc2(q)
|
|
v = self.fc3(k)
|
|
s = self.fc4(v)
|
|
return s
|
|
|
|
|
|
class DenseNet2(nn.Cell):
|
|
def __init__(self, has_bias=True, activation='relu'):
|
|
super(DenseNet2, self).__init__()
|
|
self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc5 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc6 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc7 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
self.fc8 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
|
|
|
|
def construct(self, x):
|
|
q = self.fc1(x)
|
|
k = self.fc2(q)
|
|
v = self.fc3(k)
|
|
s = self.fc4(v)
|
|
t = self.fc5(s)
|
|
u = self.fc6(t)
|
|
w = self.fc7(u)
|
|
z = self.fc8(w)
|
|
return z
|
|
|
|
|
|
class SimpleDMLNet(nn.Cell):
|
|
def __init__(self, net1, net2):
|
|
super(SimpleDMLNet, self).__init__()
|
|
self.backbone1 = net1
|
|
self.backbone2 = net2
|
|
|
|
def construct(self, x):
|
|
x1 = self.backbone1(x)
|
|
x2 = self.backbone2(x)
|
|
return x1 + x2
|
|
|
|
|
|
def train_common(net):
|
|
batch_size = 32
|
|
learning_rate = 0.1
|
|
momentum = 0.9
|
|
epoch_size = 2
|
|
device_num = 4
|
|
auto_parallel_context().set_enable_all_reduce_fusion(enable_all_reduce_fusion=True)
|
|
context.set_auto_parallel_context(device_num=device_num, parameter_broadcast=False)
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
predict = Tensor(np.ones([batch_size, 128]), dtype=ms.float32)
|
|
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
|
dataset = Dataset(predict, label, 2)
|
|
|
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
|
model = Model(net, loss, opt)
|
|
|
|
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
|
allreduce_fusion_dict = _executor._get_allreduce_fusion(model._train_network)
|
|
|
|
print(allreduce_fusion_dict)
|
|
return allreduce_fusion_dict
|
|
|
|
|
|
def test_allreduce_fusion_parameters():
|
|
cost_model_context.reset_cost_model_context()
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2)
|
|
algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm')
|
|
assert algorithm == 2
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
|
|
algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm')
|
|
assert algorithm == 1
|
|
cost_model_context.reset_cost_model_context()
|
|
algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm')
|
|
assert algorithm == 0
|
|
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
|
|
fusion_times = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_times')
|
|
assert fusion_times == 2
|
|
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.2)
|
|
tail_percent = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_percent')
|
|
assert tail_percent == 0.2
|
|
cost_model_context.reset_cost_model_context()
|
|
tail_percent = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_percent')
|
|
assert tail_percent == 0.1
|
|
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.2)
|
|
tail_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_time')
|
|
assert tail_time == 0.2
|
|
cost_model_context.reset_cost_model_context()
|
|
tail_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_time')
|
|
assert tail_time == 0.1
|
|
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.2)
|
|
allreduce_inherent_time = cost_model_context.get_cost_model_context(
|
|
'costmodel_allreduce_fusion_allreduce_inherent_time')
|
|
assert allreduce_inherent_time == 0.2
|
|
cost_model_context.reset_cost_model_context()
|
|
allreduce_inherent_time = cost_model_context.get_cost_model_context(
|
|
'costmodel_allreduce_fusion_allreduce_inherent_time')
|
|
assert allreduce_inherent_time == 0.1
|
|
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.2)
|
|
allreduce_bandwidth = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_bandwidth')
|
|
assert allreduce_bandwidth == 0.2
|
|
cost_model_context.reset_cost_model_context()
|
|
allreduce_bandwidth = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_bandwidth')
|
|
assert allreduce_bandwidth == 0.1
|
|
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.2)
|
|
computation_time_parameter = cost_model_context.get_cost_model_context(
|
|
'costmodel_allreduce_fusion_computation_time_parameter')
|
|
assert computation_time_parameter == 0.2
|
|
cost_model_context.reset_cost_model_context()
|
|
computation_time_parameter = cost_model_context.get_cost_model_context(
|
|
'costmodel_allreduce_fusion_computation_time_parameter')
|
|
assert computation_time_parameter == 0.1
|
|
|
|
|
|
def test_allreduce_fusion1():
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
|
net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
|
|
allreduce_fusion_dict = train_common(net)
|
|
expect_dict = {'backbone2.fc8.weight': 2,
|
|
'backbone2.fc7.weight': 2,
|
|
'backbone2.fc6.weight': 2,
|
|
'backbone1.fc4.weight': 2,
|
|
'backbone1.fc3.weight': 2,
|
|
'backbone1.fc2.weight': 2,
|
|
'backbone2.fc5.weight': 1,
|
|
'backbone2.fc4.weight': 1,
|
|
'backbone2.fc3.weight': 1,
|
|
'backbone2.fc2.weight': 1,
|
|
'backbone2.fc1.weight': 1,
|
|
'backbone1.fc1.weight': 1}
|
|
assert allreduce_fusion_dict == expect_dict
|
|
cost_model_context.reset_cost_model_context()
|
|
|
|
|
|
# reset_cost_model_context is called, the default value of costmodel_allreduce_fusion_times is 0, step_allreduce_fusion
|
|
# is bypassed.
|
|
def test_allreduce_fusion2():
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
|
|
cost_model_context.reset_cost_model_context()
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
|
net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
|
|
allreduce_fusion_dict = train_common(net)
|
|
expect_dict = {}
|
|
assert allreduce_fusion_dict == expect_dict
|
|
cost_model_context.reset_cost_model_context()
|
|
|
|
|
|
def test_allreduce_fusion3():
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=3)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.3333333)
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
|
net = SimpleDMLNet(DenseNet1(has_bias=True, activation='relu'), DenseNet2(has_bias=False, activation='relu'))
|
|
allreduce_fusion_dict = train_common(net)
|
|
expect_dict = {'backbone2.fc8.weight': 3,
|
|
'backbone2.fc7.weight': 3,
|
|
'backbone2.fc6.weight': 2,
|
|
'backbone2.fc5.weight': 2,
|
|
'backbone2.fc4.weight': 2,
|
|
'backbone2.fc3.weight': 1,
|
|
'backbone2.fc2.weight': 1,
|
|
'backbone2.fc1.weight': 1,
|
|
'backbone1.fc4.bias': 3,
|
|
'backbone1.fc4.weight': 3,
|
|
'backbone1.fc3.bias': 3,
|
|
'backbone1.fc3.weight': 2,
|
|
'backbone1.fc2.bias': 2,
|
|
'backbone1.fc2.weight': 2,
|
|
'backbone1.fc1.bias': 2,
|
|
'backbone1.fc1.weight': 2}
|
|
assert allreduce_fusion_dict == expect_dict
|
|
cost_model_context.reset_cost_model_context()
|
|
|
|
|
|
def test_allreduce_fusion4():
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
|
net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
|
|
allreduce_fusion_dict = train_common(net)
|
|
expect_dict = {'backbone2.fc8.weight': 2,
|
|
'backbone2.fc7.weight': 2,
|
|
'backbone2.fc6.weight': 2,
|
|
'backbone1.fc8.weight': 2,
|
|
'backbone1.fc7.weight': 2,
|
|
'backbone1.fc6.weight': 2,
|
|
'backbone2.fc5.weight': 1,
|
|
'backbone2.fc4.weight': 1,
|
|
'backbone2.fc3.weight': 1,
|
|
'backbone2.fc2.weight': 1,
|
|
'backbone2.fc1.weight': 1,
|
|
'backbone1.fc5.weight': 1,
|
|
'backbone1.fc4.weight': 1,
|
|
'backbone1.fc3.weight': 1,
|
|
'backbone1.fc2.weight': 1,
|
|
'backbone1.fc1.weight': 1}
|
|
|
|
assert allreduce_fusion_dict == expect_dict
|
|
cost_model_context.reset_cost_model_context()
|
|
|
|
|
|
def test_allreduce_fusion5():
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.1)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.05)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.000001)
|
|
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.0000015)
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
|
net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
|
|
allreduce_fusion_dict = train_common(net)
|
|
|
|
expect_dict = {'backbone2.fc8.weight': 3,
|
|
'backbone2.fc7.weight': 3,
|
|
'backbone2.fc6.weight': 3,
|
|
'backbone2.fc5.weight': 3,
|
|
'backbone2.fc4.weight': 2,
|
|
'backbone2.fc3.weight': 2,
|
|
'backbone2.fc2.weight': 1,
|
|
'backbone2.fc1.weight': 1,
|
|
'backbone1.fc8.weight': 3,
|
|
'backbone1.fc7.weight': 3,
|
|
'backbone1.fc6.weight': 3,
|
|
'backbone1.fc5.weight': 3,
|
|
'backbone1.fc4.weight': 2,
|
|
'backbone1.fc3.weight': 2,
|
|
'backbone1.fc2.weight': 1,
|
|
'backbone1.fc1.weight': 1,}
|
|
|
|
assert allreduce_fusion_dict == expect_dict
|
|
cost_model_context.reset_cost_model_context()
|