mindspore/tests/ut/python/parallel/test_allreduce_fusion.py

310 lines
14 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor, context
from mindspore.common.api import _executor
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim.momentum import Momentum
from mindspore.parallel import _cost_model_context as cost_model_context
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.train import Model
from mindspore.context import ParallelMode
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class DenseNet1(nn.Cell):
def __init__(self, has_bias=True, activation='relu'):
super(DenseNet1, self).__init__()
self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
def construct(self, x):
q = self.fc1(x)
k = self.fc2(q)
v = self.fc3(k)
s = self.fc4(v)
return s
class DenseNet2(nn.Cell):
def __init__(self, has_bias=True, activation='relu'):
super(DenseNet2, self).__init__()
self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc5 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc6 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc7 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc8 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
def construct(self, x):
q = self.fc1(x)
k = self.fc2(q)
v = self.fc3(k)
s = self.fc4(v)
t = self.fc5(s)
u = self.fc6(t)
w = self.fc7(u)
z = self.fc8(w)
return z
class SimpleDMLNet(nn.Cell):
def __init__(self, net1, net2):
super(SimpleDMLNet, self).__init__()
self.backbone1 = net1
self.backbone2 = net2
def construct(self, x):
x1 = self.backbone1(x)
x2 = self.backbone2(x)
return x1 + x2
def train_common(net):
batch_size = 32
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
device_num = 4
auto_parallel_context().set_enable_all_reduce_fusion(enable_all_reduce_fusion=True)
context.set_auto_parallel_context(device_num=device_num, parameter_broadcast=False)
context.set_context(mode=context.GRAPH_MODE)
predict = Tensor(np.ones([batch_size, 128]), dtype=ms.float32)
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
dataset = Dataset(predict, label, 2)
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, loss, opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
allreduce_fusion_dict = _executor._get_allreduce_fusion(model._train_network)
print(allreduce_fusion_dict)
return allreduce_fusion_dict
def test_allreduce_fusion_parameters():
cost_model_context.reset_cost_model_context()
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2)
algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm')
assert algorithm == 2
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm')
assert algorithm == 1
cost_model_context.reset_cost_model_context()
algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm')
assert algorithm == 0
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
fusion_times = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_times')
assert fusion_times == 2
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.2)
tail_percent = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_percent')
assert tail_percent == 0.2
cost_model_context.reset_cost_model_context()
tail_percent = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_percent')
assert tail_percent == 0.1
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.2)
tail_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_time')
assert tail_time == 0.2
cost_model_context.reset_cost_model_context()
tail_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_time')
assert tail_time == 0.1
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.2)
allreduce_inherent_time = cost_model_context.get_cost_model_context(
'costmodel_allreduce_fusion_allreduce_inherent_time')
assert allreduce_inherent_time == 0.2
cost_model_context.reset_cost_model_context()
allreduce_inherent_time = cost_model_context.get_cost_model_context(
'costmodel_allreduce_fusion_allreduce_inherent_time')
assert allreduce_inherent_time == 0.1
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.2)
allreduce_bandwidth = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_bandwidth')
assert allreduce_bandwidth == 0.2
cost_model_context.reset_cost_model_context()
allreduce_bandwidth = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_bandwidth')
assert allreduce_bandwidth == 0.1
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.2)
computation_time_parameter = cost_model_context.get_cost_model_context(
'costmodel_allreduce_fusion_computation_time_parameter')
assert computation_time_parameter == 0.2
cost_model_context.reset_cost_model_context()
computation_time_parameter = cost_model_context.get_cost_model_context(
'costmodel_allreduce_fusion_computation_time_parameter')
assert computation_time_parameter == 0.1
def test_allreduce_fusion1():
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
allreduce_fusion_dict = train_common(net)
expect_dict = {'backbone2.fc8.weight': 2,
'backbone2.fc7.weight': 2,
'backbone2.fc6.weight': 2,
'backbone1.fc4.weight': 2,
'backbone1.fc3.weight': 2,
'backbone1.fc2.weight': 2,
'backbone2.fc5.weight': 1,
'backbone2.fc4.weight': 1,
'backbone2.fc3.weight': 1,
'backbone2.fc2.weight': 1,
'backbone2.fc1.weight': 1,
'backbone1.fc1.weight': 1}
assert allreduce_fusion_dict == expect_dict
cost_model_context.reset_cost_model_context()
# reset_cost_model_context is called, the default value of costmodel_allreduce_fusion_times is 0, step_allreduce_fusion
# is bypassed.
def test_allreduce_fusion2():
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
cost_model_context.reset_cost_model_context()
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
allreduce_fusion_dict = train_common(net)
expect_dict = {}
assert allreduce_fusion_dict == expect_dict
cost_model_context.reset_cost_model_context()
def test_allreduce_fusion3():
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=3)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.3333333)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
net = SimpleDMLNet(DenseNet1(has_bias=True, activation='relu'), DenseNet2(has_bias=False, activation='relu'))
allreduce_fusion_dict = train_common(net)
expect_dict = {'backbone2.fc8.weight': 3,
'backbone2.fc7.weight': 3,
'backbone2.fc6.weight': 2,
'backbone2.fc5.weight': 2,
'backbone2.fc4.weight': 2,
'backbone2.fc3.weight': 1,
'backbone2.fc2.weight': 1,
'backbone2.fc1.weight': 1,
'backbone1.fc4.bias': 3,
'backbone1.fc4.weight': 3,
'backbone1.fc3.bias': 3,
'backbone1.fc3.weight': 2,
'backbone1.fc2.bias': 2,
'backbone1.fc2.weight': 2,
'backbone1.fc1.bias': 2,
'backbone1.fc1.weight': 2}
assert allreduce_fusion_dict == expect_dict
cost_model_context.reset_cost_model_context()
def test_allreduce_fusion4():
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
allreduce_fusion_dict = train_common(net)
expect_dict = {'backbone2.fc8.weight': 2,
'backbone2.fc7.weight': 2,
'backbone2.fc6.weight': 2,
'backbone1.fc8.weight': 2,
'backbone1.fc7.weight': 2,
'backbone1.fc6.weight': 2,
'backbone2.fc5.weight': 1,
'backbone2.fc4.weight': 1,
'backbone2.fc3.weight': 1,
'backbone2.fc2.weight': 1,
'backbone2.fc1.weight': 1,
'backbone1.fc5.weight': 1,
'backbone1.fc4.weight': 1,
'backbone1.fc3.weight': 1,
'backbone1.fc2.weight': 1,
'backbone1.fc1.weight': 1}
assert allreduce_fusion_dict == expect_dict
cost_model_context.reset_cost_model_context()
def test_allreduce_fusion5():
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.1)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.05)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.000001)
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.0000015)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
allreduce_fusion_dict = train_common(net)
expect_dict = {'backbone2.fc8.weight': 3,
'backbone2.fc7.weight': 3,
'backbone2.fc6.weight': 3,
'backbone2.fc5.weight': 3,
'backbone2.fc4.weight': 2,
'backbone2.fc3.weight': 2,
'backbone2.fc2.weight': 1,
'backbone2.fc1.weight': 1,
'backbone1.fc8.weight': 3,
'backbone1.fc7.weight': 3,
'backbone1.fc6.weight': 3,
'backbone1.fc5.weight': 3,
'backbone1.fc4.weight': 2,
'backbone1.fc3.weight': 2,
'backbone1.fc2.weight': 1,
'backbone1.fc1.weight': 1,}
assert allreduce_fusion_dict == expect_dict
cost_model_context.reset_cost_model_context()